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ABSTRACT 
 

Using gridded high-resolution aeromagnetic data, the performance of several 

automated 3-D depth-to-source methods was evaluated over shallow control sources 

based on how close their depth estimates came to the actual depths to the tops of the 

sources.  For all three control sources, only the simple analytic signal method, the local 

wavenumber method applied to the vertical integral of the magnetic field, and the 

horizontal gradient method applied to the pseudo-gravity field provided median depth 

estimates that were close (-11% to +14% error) to the actual depths.  Careful attention to 

data processing was required in order to calculate a sufficient number of depth estimates 

and to reduce the occurrence of false depth estimates.  For example, to eliminate 

sampling bias, high-frequency noise and interference from deeper sources, it was 

necessary to filter the data before calculating derivative grids and subsequent depth 

estimates.  To obtain smooth spatial derivative grids using finite differences, the data had 

to be gridded at intervals less than one percent of the anomaly wavelength.  Before 

finding peak values in the derived signal grids, it was necessary to remove calculation 

noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval 

that enabled the search window to encompass only the peaks of interest.  Using the 

methods that worked best over the control sources, depth estimates over geologic sites of 

interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city 

landfill.  Also, a throw of around 2 kilometers was determined for a detachment fault that 

has a displacement of roughly 6 kilometers. 
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INTRODUCTION 

 

 The purpose of this study was to gain a better understanding of how to calculate 

and interpret three-dimensional depth-to-source estimates using automated techniques on 

gridded potential-field data.  One of the most useful applications of magnetic data has 

been to determine the depth to the top of magnetic sources.  In hydrocarbon exploration, 

this type of application gives the thickness of the sedimentary section.  In mineral 

exploration, depth estimates are important in determining the depth of ore bodies that 

contain magnetic minerals (Thompson, 1982).  On a smaller scale, depth estimates to 

cultural sources may be important to environmental remediation efforts.  Because of the 

usefulness of this application of magnetic data, there has been a continuing effort to 

develop improved techniques that yield accurate depth-to-source estimates (Thompson, 

1982). 

 Recently, there has been an increase in use of automated interpretation 

techniques, as faster computers and commercial software are now widely available (Reid 

et al., 1990).  Many of these automated techniques are capable of rapidly calculating 

depth estimates from large grids of data.  However, their reliability is questionable due to 

a lack of adequate testing.  Previous studies have only tested these techniques on a few 

deep, thick, large-scale geologic targets.  In this study, several automated interpretation 

techniques were tested using relatively shallow, thin sources whose geometry and depth 

were precisely known.   
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 Currently, there is no single correct method of calculating depth-to-source 

estimates using potential-field data.  However, there are several incorrect ways of 

approaching the problem.  This project’s aim was to provide a set of guidelines to aid in 

the calculation and interpretation of three-dimensional depth-to-source estimates and to 

prevent the occurrence of false depth estimates.  These guidelines were derived from test 

calculations made with high-resolution aeromagnetic data over different control sources 

within the Tucson basin using several automated techniques. 
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GEOLOGIC SETTING 

 

The Tucson basin is a nearly 2,600 square-kilometer area in Pima County, 

southeastern Arizona.  It is a sediment-filled structural depression that trends north to 

northwest and lies within the Basin and Range physiographic province (Figure 1) 

(Anderson, 1987).  The basin is bounded by rugged mountains that rise abruptly above a 

broad and gently sloping valley floor.  The mountains that surround the basin, which 

include the Tucson, Black, Sierrita, Santa Rita, Empire, Rincon, Tanque Verde, Santa 

Catalina and Tortolita Mountains, are composed of igneous, metamorphic and 

sedimentary rocks that range in age from Precambrian to Tertiary (Anderson, 1987). 

The present-day Tucson basin is the result of a variety of geologic processes that 

occurred during the Cenozoic era.  Many of the oldest deposits that fill the Tucson basin 

accumulated during a detachment-related structural regime (Anderson, 1987).  

Subsequent block faulting and sedimentation resulted in the formation and eventual 

burial of a deep structural trough trending north to northwest along the central axis of the 

modern valley floor.  Continued erosion, pedimentation and deposition of the sediment 

following the cessation of block faulting enlarged the Tucson basin to its present-day 

extent (Anderson, 1987). 

In 1972, Exxon Company, U.S.A. drilled a 3,828 meter-deep (12,556 ft) test well 

near the center of the Tucson basin (Exxon State (32)-1, Sec. 5, T. 16 S., R. 15 E., Pima 

County, Arizona) (Figure 1).  The well was drilled near the deep part of the basin that 

provided a thick, relatively complete sedimentary section with few hiatuses or  
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Figure 1.  Map of the Tucson basin within the Basin and Range of southern Arizona, 
along with the location of the Exxon State (32)-1 well (modified from Houser and 
Gettings, 2000). 



   
  16 

 

complicating influxes of locally derived sediment (Houser and Gettings, 2000).  A 

detailed study of cuttings and geophysical logs from the Exxon State (32)-1 exploration 

well, in addition to surface data in the area and other deep wells in the basins of 

southwestern Arizona, has led to a revised subsurface stratigraphy for the basin from that 

reported by Davidson (1973) and Anderson (1987) and provided new insight into the 

tectonic history of the basin.  The well has provided the most comprehensive record of 

the stratigraphy of the Tucson basin available today (Houser and Gettings, 2000). 

The stratigraphic section that was identified in the Exxon well is as follows:  

Pleistocene(?) to upper Miocene upper basin-fill sedimentary rocks (0-909 m); upper and 

middle Miocene lower basin-fill sedimentary rocks (909-1,881 m); lower Miocene and 

upper Oligocene(?) Pantano Formation (1,881-2,517 m); lower Miocene(?) and 

Oligocene middle Tertiary volcanic and sedimentary rocks (2,517-3,057 m); Lower 

Cretaceous to Upper Jurassic Bisbee Group (3,057-3,659 m); pre-Upper Jurassic 

granitoid crystalline rock (3,659-3,828 m TD) (Figure 2) (Houser and Gettings, 2000). 

The upper 1,881 meters of sediments in the Tucson basin have been informally 

broken up into four units by Houser and Gettings (2000), Units A and B of the upper 

basin fill and Units C and D of the lower basin fill (Figure 2).  The upper and lower 

basin-fill sediments have been separated based on age, degree of consolidation and 

amount of deformation.  The upper basin fill is generally Pliocene and Pleistocene in age, 

poorly to moderately consolidated, flat lying and broken by only a few small 

displacement faults.  The lower basin fill is generally middle to late Miocene in age, 

moderately consolidated, slightly to moderately deformed with dips of as much as 15º  



   
  17 

 

 
Figure 2.  Stratigraphic column of rocks in the Exxon State (32)-1 well.  Dashed 
lines under clast-lithology heading indicate intervals where the lithology is rare 
(modified from Houser and Gettings, 2000). 
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and broken by numerous faults ranging in displacement from small to very large (Houser 

and Gettings, 2000). 

The areal distribution of the upper and lower basin-fill facies indicates they were 

deposited in basins having a somewhat modern configuration.  The upper basin fill was 

derived from adjacent ranges and consists mainly of alluvial fan, alluvial plain and playa 

deposits.  The lower basin fill does not contain lithologies that are present or locally 

abundant in the adjacent ranges, which has been attributed to erosional stripping, but also 

consists mainly of fluvial deposits (Houser and Gettings, 2000).  

Just below the upper and lower basin-fill sediments is the Pantano Formation 

(Figure 2).  This formation was encountered between 1,881 and 2,517 m in the Exxon 

State (32)-1 well and can be seen in outcrop approximately 7 to 9 kilometers east of the 

well site.  Its age has been approximated to be lower Miocene and upper Oligocene.  The 

Pantano Formation is made up of syntectonic deposits of alluvial fans, rock avalanches 

and volcanic flows in a region of middle Tertiary extension.  In the Exxon State (32)-1 

well, two parts to the Pantano Formation were encountered.  The top 449 m of the 

Pantano Formation consists of well-consolidated gypsiferous, muddy conglomerate 

containing an andesite flow in the lower half.  Beneath this is a 187 m-thick sequence of 

rock-avalanche deposits that are comprised mostly of intermediate-composition volcanic 

rocks (Houser and Gettings, 2000). 

Beneath the Pantano Formation lie middle Tertiary volcanic and sedimentary 

rocks penetrated from 2,517 to 3,057 m in the Exxon State (32)-1 well (Figure 2).  These 

rocks have been estimated to be lower Miocene and Oligocene in age.  The 540 m-thick 
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interval consists of a diverse group of rocks with uncertain correlation to surface units.  It 

contains six different identifiable rock types:  a lamprophyre(?) dike, an intermediate-

composition lava flow, a conglomerate, a crystal-lithic ash-flow tuff, a limestone 

conglomerate and a pyroxene trachyte flow (Houser and Gettings, 2000). 

Just beneath the middle Tertiary rocks are the lower Cretaceous and Upper 

Jurassic rocks belonging to the Bisbee Group (Figure 2).  These rocks were encountered 

between depths of 3,057 and 3,659 m in the Exxon State (32)-1 well and consist mainly 

of shale, thin-bedded limestone and conglomerates.  In the Empire and Whetstone 

Mountains, 9 to 18 kilometers southeast of the well site, the Bisbee Group is comprised 

of five formations:  the basal Glance Conglomerate and overlying Willow Canyon 

Formation, Apache Canyon Formation, Shellenberger Canyon Formation and Turney 

Ranch Formation.  All but the Willow Canyon Formation were found in the Exxon State 

(32)-1 well, however they were much thinner than those found in the Empire and 

Whetstone Mountains. 

The Bisbee Group was deposited in the Bisbee basin, which pre-dates the present-

day Tucson basin.  The Bisbee basin formed as a series of block-faulted, asymmetrical, 

northwest-trending, en-echelon extensional sub-basins in response to the rifting that 

created the Chihuahua trough and formed the Gulf of Mexico (Houser and Gettings, 

2000).  Two explanations for the thinner formations and missing Willow Canyon 

Formation of the Bisbee Group discovered at the well site have been postulated.  Either 

the well was located close to the northwestern extent of rifting that formed the Bisbee 
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basin (and hence at a shallower portion of the basin), or the well was located at the 

shallower end of a half-graben Bisbee sub-basin (Houser and Gettings, 2000). 

At 3,659 m in the Exxon State (32)-1 well, an equigranular granitoid crystalline 

rock was encountered (Figure 2).  The well penetrated 169 m of this rock, and drilling 

stopped at 3,828 m.  The age of the granitoid body can only be estimated at pre-

Cretaceous.  The granitoid chips from cuttings are composed of quartz and feldspar along 

with muscovite, biotite or chlorite, with mafic minerals being rare.  There is evidence 

from geophysical logs, which include density, gamma, sonic and resistivity, that the 

granitoid body is cut by several dikes, and that there may be two different igneous bodies 

separated by a fault (Houser and Gettings, 2000). 

 The geologic events that affected the Tucson basin in the vicinity of the Exxon 

State (32)-1 well site were summarized by Houser and Gettings (2000) based on their 

interpretation of the well data and surrounding exposures.  They suggested the following 

events, in the order from oldest to youngest:  emplacement of the granitoid crystalline 

rock, probably in Middle Proterozoic time (1,400 Ma); probable deposition and 

subsequent erosion of Paleozoic marine sedimentary rocks; northeast-southwest directed 

extension, beginning in latest Jurassic time and continuing through the Early Cretaceous, 

creating the Bisbee basin in which fluvial, lacustrine and marine sedimentary rocks of the 

Bisbee Group were deposited; late Cretaceous to middle Tertiary hiatus; magmatism and 

northeast-southwest directed crustal extension during the middle Tertiary (mid-Tertiary 

orogeny); detachment faulting during the middle Tertiary that caused the deposition of 

the Pantano Formation (and, according to Anderson (1987), deformation and uplift of the 
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metamorphic core complex rocks that make up the Tortolita, Santa Catalina, Tanque 

Verde and Rincon Mountains); an early Miocene to middle Miocene hiatus; and finally 

basin and range extension and faulting, responsible for the basin-fill sedimentary rocks in 

the uppermost 1,881 meters. 
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THEORY OF MAGNETISM 

 

Basic Magnetism 

 The purpose of magnetic surveying is to investigate the subsurface based on 

variations in the Earth’s magnetic field that result from the magnetic properties of the 

underlying rocks, or in some cases cultural sources.  In order to understand these 

variations, it is important to first understand the basic concepts of magnetism and how 

subsurface geology can affect the measured Earth’s magnetic field.  The following 

discussions are based on material from Kearey and Brooks (1991) and Telford et al. 

(1990), unless otherwise noted. 

 In classical magnetic theory, the mutual attraction (or repulsion) of two point 

magnetic poles is considered.  Magnetic poles can interact with one another at distance 

by means of their magnetic fields.  The force F between two magnetic poles of strength 

m1 and m2 separated by a distance r is given by  

2
210

4 rðì

mmì
F

R

=                                                          (1) 

where µο and µR are constants corresponding to the magnetic permeability of vacuum and 

the magnetic permeability of the medium separating the poles, respectively.  The force is 

attractive if the poles are of opposite sign and repulsive if they are of like sign.  The sign 

convention is that a positive pole is attracted towards the Earth’s north pole. 

 In order to measure the force due to a magnetic field in magnetic surveying, a 

more practical form of F is needed.  The magnetic field strength, H, is defined as the 
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force exerted on a unit positive pole due to a pole of strength m at a distance r from the 

pole and can be expressed mathematically as 

24 rðì

mì

m

F
H

R

o

'
==                                                     (2) 

where m′ is the unit positive pole and essentially the instrument used in measurement. 

 Common magnets, such as bar magnets, have a pair of poles and are referred to as 

magnetic dipoles.  Magnetic dipoles have magnetic moments associated with them.  The 

magnetic moment M of a dipole with poles of strength m and a distance l apart is defined 

by 

M = ml.                                                              (3) 

According to modern magnetic theory, all magnetic poles exist in pairs, or dipoles, in 

nature.  Also, all magnetic fields are a direct result of the flow of electric current.  A 

current flowing in a circular loop acts as a magnetic dipole located at the center of the 

loop.  The magnetic field is oriented in the direction in which a right-handed screw would 

advance if turned in the direction of current flow.  Its dipole moment M is given by 

M = iA                                                               (4) 

where i is the current and A is the cross-sectional area of the loop.  This relationship 

between electric current and magnetism can also be seen at the atomic level. 

 On an atomic scale, all substances are magnetic.  Both the spin of an atom’s 

electrons and the orbital motions of the electrons around the nucleus constitute circular 

currents and cause atoms to behave as dipoles.  These atomic dipoles also have magnetic 
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moments associated with them.  The magnetic dipole moments associated with electron 

motion are measured in terms of the Bohr magneton Bµ , where 

m

eh
B π

µ
4

=                                                            (5) 

with e being the elementary charge, m the electron mass and h being Planck’s constant 

(Halliday et al., 1993).  The dipole moment associated with intrinsic electron spin is 

almost exactly –1 Bµ .  The dipole moment associated with electron orbital motion orbµ  is 

orborb L
m

e

2
−=µ                                                       (6) 

where orbL  is the orbital angular momentum (Halliday et al., 1993).  Molecules also have 

spin, which gives them magnetic moments as well. 

 When a material is placed in a weak external magnetic field, it will acquire a 

magnetization in the direction of the field, which is lost when the material is removed 

from the field.  This is referred to as induced magnetization and is caused by the 

reorientation of atoms within the material so that their electron spins line up with the 

direction of the applied field.  The intensity of induced magnetization Ji of a material is 

defined as the dipole moment per unit volume of material: 

V

M
J i =                                                              (7) 

where M is the magnetic moment and V is the unit volume of the material. 

 The degree to which a material is magnetized is determined by that material’s 

magnetic susceptibility.  The susceptibility k of a material is defined as the ratio of 
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intensity of magnetization Ji to the magnetizing field H and is with respect to unit 

volume: 

H

J
k i= .                                                              (8) 

Magnetic susceptibility is the most important physical property measured in magnetics.  

Susceptibility is dimensionless, however in the SI system its value is greater than that in 

the c.g.s system by a factor of 4π . 

 The arrangement of atomic dipoles within a material defines that material’s 

magnetic behavior.  All materials can be classified as either diamagnetic or paramagnetic.  

In diamagnetic materials, all electron shells around the nuclei are filled and no unpaired 

electrons exist.  Since quantum theory only allows a maximum of two electrons to exist 

in the same state provided they have opposite spins, the spin magnetic moments in 

diamagnetic materials cancel.  When placed in an external magnetic field, the paths of the 

orbiting electrons in a diamagnetic material rotate to create a magnetic field in opposition 

to the applied field.  This results in a very weak and negative susceptibility.  In 

paramagnetic materials, the electron shells are incomplete, and the spin magnetic 

moments do not cancel.  The unpaired electrons’ spins rotate to produce a field in the 

same direction as the applied field.  This results in a positive susceptibility, but is also 

very weak. 

 In some paramagnetic materials possessing several unpaired electrons, the dipoles 

associated with the spins of these electrons are magnetically coupled between adjacent 

atoms.  The coupled magnetic moments constitute a single magnetic domain.  The 
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magnetic coupling can be either parallel or anti-parallel, depending on the degree of 

overlap among electron orbits.  If the coupling is parallel, the result is a very strong 

magnetization and a high magnetic susceptibility.  These materials are referred to as 

ferromagnetic and rarely occur naturally in the Earth’s crust.  Examples of ferromagnetic 

materials include iron, cobalt and nickel.  If the coupling is anti-parallel, there are an 

equal number of dipoles in each direction and the magnetic effects are self-canceling.  

These materials are referred to as anti-ferromagnetic.  An example of a naturally 

occurring anti-ferromagnetic material is hematite.  In some materials, such as magnetite, 

the dipole coupling is similarly anti-parallel.  However, the number of dipoles in each 

direction is unequal, giving rise to a net magnetization and a relatively high magnetic 

susceptibility.  These materials are referred to as ferrimagnetic and make up nearly all of 

the minerals responsible for magnetic properties of common rock types. 

 The strength of magnetization of ferromagnetic and ferrimagnetic materials 

decreases as temperature increases and eventually disappears at and above the Curie 

temperature.  The Curie temperature is the point at which interatomic distances are too 

great to allow for electron coupling between atoms.  Above this temperature, the material 

behaves as an ordinary paramagnetic material.  However, if a material is cooled through 

and below the Curie temperature in the presence of a magnetic field, it will inherit a 

permanent magnetization in the direction of that field.  This permanent magnetization is 

often referred to as remanent magnetization.  Remanent magnetization will be discussed 

later in more detail. 
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The Geomagnetic Field 

 The Earth’s main magnetic field, the geomagnetic field, is believed to be caused 

by a dynamo action produced by the circulation of charged particles in coupled 

convection cells located within the outer part of the Earth’s core.  Since these circulation 

patterns within the outer core change slowly with time, there is a slow, progressive, 

temporal change in the geomagnetic field called secular variation.  This change is evident 

in the observed gradual rotation of the north magnetic pole around the geographic pole.  

Also, according to paleomagnetic studies, the polarity of the geomagnetic field 

occasionally reverses itself, at periods on the order of a few-hundred thousand years.  

This has been attributed to the change in dominance among the coupled convection cells. 

 In addition to the secular variations of the geomagnetic field, there are magnetic 

effects of external origin that change the field much more rapidly.  These changes are due 

to magnetic fields induced by electrical currents in the ionized layer of the upper 

atmosphere.  There are diurnal variations in the geomagnetic field that range in amplitude 

from about 20-80 nanoTesla (nT are the SI units for weak magnetic fields), with 

maximum variation at the polar regions.  These variations are thought be controlled by 

the action of the solar winds and perhaps the moon on ionospheric currents.  There are 

also far less regular and much stronger short-term variations in the geomagnetic field 

with amplitudes of up to 1000 nT.  These disturbances are referred to as magnetic storms 

and are caused by intense solar activity. 

 At any point on the Earth’s surface, the geomagnetic field can be characterized by 

its direction and intensity.  Often, the parameters that are measured in the field include 
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the magnetic declination D, the horizontal intensity H and the vertical intensity Z.  From 

these elements, all other parameters of the magnetic field can be calculated.  These 

components are generally reported in SI units of nanoTesla.  The Earth's magnetic field 

intensity ranges approximately 25,000 nT at the magnetic equator to 70,000 nT at the 

magnetic poles. 

 The International Geomagnetic Reference Field (IGRF) defines the theoretical 

undisturbed geomagnetic field at any point along the Earth’s surface.  Nearly 90% of the 

undisturbed field can be represented by a magnetic dipole at the center of the Earth 

inclined at about 11.5 degrees to the axis of rotation.  The magnetic moment of this 

fictitious geocentric dipole can be calculated from the observed field.  If this dipole is 

subtracted from the observed field, the residual field can be approximated by the effects 

of a second, smaller dipole.  This process can be continued by fitting dipoles of ever 

decreasing moment until the observed geomagnetic field is simulated to any required 

degree of accuracy.  This fitting process is carried out using spherical harmonic analysis 

and was used to compute the formula for the IGRF.  Variations in the geomagnetic field 

can be determined by subtracting the IGRF from observed magnetic-field data.  These 

variations are referred to as magnetic anomalies. 
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Rock Magnetism 

 Most common rock-forming minerals have very small magnetic susceptibilities.  

Anomalies in the geomagnetic field are mainly caused by variations in the presence of a 

small proportion of magnetic minerals found in the underlying rocks.  There are two 

geochemical groups that contain these minerals, the iron-titanium-oxygen group and the 

iron-sulfide group.  The first group contains the mineral magnetite (Fe3O4) and a solid 

solution between ilmenite (FeTiO3) and hematite (Fe2O3) (Blatt and Tracy, 1995).  

Magnetite and ilmenite are ferrimagnetic minerals and have a relatively high magnetic 

susceptibility.  Hematite, on the other hand, is anti-ferromagnetic and does not usually 

give rise to any anomalies.  The second group provides the mineral pyrrhotite (FeS1+x, 

0<x<0.15).  The magnetic susceptibility of pyrrhotite is dependant upon the actual 

composition of the mineral and is also a ferrimagnetic mineral.  Magnetite is by far the 

most common magnetic mineral, and the magnetic susceptibility of most rocks is 

proportional to the magnetite content.  To a lesser extent, however, minerals such as 

ilmenite or pyrrhotite also give rise to a significant magnetic susceptibility. 

 Magnetite content in rocks can vary dramatically, which makes direct correlation 

between lithology and susceptibility very difficult.  However, it is reasonable to classify 

the magnetic behavior of rocks according to their overall magnetite content.  Basic 

igneous rocks have a relatively high magnetite content, which causes them to be highly 

magnetic.  The proportion of magnetite in igneous rock tends to decrease with increasing 

silica content, making acid igneous rocks generally less magnetic than basic igneous 

rocks.  Metamorphic rocks also vary greatly in their magnetite content.  The abundance 
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of iron and the partial pressure of oxygen, along with the degree of metamorphism, 

control the amount of magnetite and subsequently the degree of magnetic susceptibility 

that is formed in the rock.  Sedimentary rocks are rarely magnetic, and most anomalies 

observed over sediment-covered areas are caused by underlying igneous or metamorphic 

basement, or by intrusions into the sediments.  Other causes may include buried volcanic 

flows and man-made ferrous materials. 

 Any rock containing magnetic minerals may posses both an induced 

magnetization vector Ji and a remanent magnetization vector Jr.  Induced magnetization 

is a direct result of the present-day geomagnetic field and would be lost if the 

geomagnetic field could be removed.  Natural remanent magnetization (NRM) is a 

permanent magnetization of a rock and is dependant upon the magnetic history of the 

rock.  These two magnetizations may differ substantially in both magnitude and direction.  

The total magnetization of a rock J is the vector sum of the induced magnetization and 

the remanent magnetization:  

ri JJJ
vvv

+= .                                                         (9) 

There are several mechanisms by which natural remanent magnetization forms in rocks.  

Primary remanent magnetization may be acquired as an igneous or volcanic rock 

solidifies and cools through the Curie temperature of its magnetic minerals in the 

presence of the contemporaneous geomagnetic field (thermoremanent magnetization, 

TRM).  If the field is strong enough, the dipoles will permanently orient themselves 

across imperfections within the grains of the mineral, setting up a permanent 

magnetization.  Another form of primary remanent magnetization occurs as magnetic 
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particles of sediment align within the Earth’s field during sedimentation (detrital 

remanent magnetization, DRM).  Secondary remanent magnetization occurs later in the 

rock’s history.  Magnetic minerals may recrystallize or grow during diagenesis or 

metamorphism in a particular magnetic orientation (chemical remanent magnetization, 

CRM).  Secondary remanent magnetization can also develop slowly in a rock standing in 

an ambient magnetic field as the domain magnetizations relax into the direction of the 

field (viscous remanent magnetization, VRM).  Also, the removal of a strong external 

field, such as what occurs when lightning strikes, produces remanent magnetization in 

small areas (isothermal remanent magnetization, IRM). 
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Magnetic Anomalies 

 All magnetic anomalies are superimposed on the geomagnetic field and are the 

result of variations in the presence of magnetic minerals in the near-surface crust.  

Common causes of magnetic anomalies include dikes, faulted, folded or truncated sills 

and lava flows, massive basic intrusions, metamorphic basement rocks and magnetite ore 

bodies.  Magnetic anomalies may range in amplitude from a few tens of nanoTesla over 

deep metamorphic basement to several hundred nT over basic intrusions and may reach 

an amplitude of several thousand nT over magnetite ores. 

 The normal elements of the geomagnetic field at any one point are related by 

B2 = H2 + Z2                                                       (10) 

where B is the total geomagnetic-field intensity and H and Z are the horizontal and 

vertical components of B, respectively (Figure 3a).  If a magnetic anomaly is 

superimposed on the geomagnetic field, there will be a change ∆B in the strength of the 

total-field vector B.  At any one point, the anomaly produces a vertical component ∆Z 

and a horizontal component ∆H at an angle α to H.  Only the part of ∆H in the direction 

of H, ∆H ′, will contribute to the change in B (Figure 3b) 

∆H ′ = ∆H cos α.                                                    (11) 

A vector sum of the magnetic anomaly and the geomagnetic field at any one point 

(Figure 3c) is given by 

(B + ∆B)2 = (H + ∆H ′)2 + (Z + ∆Z)2 .                                   (12) 

This equation simplifies to give 

∆B = ∆Z (Z/B) + ∆H ′(H/B)                                           (13) 
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in geomagnetic element ratios, or with angular descriptions  

∆B = ∆Z sin I + ∆H cos I cos α                                        (14) 

where I is the inclination of the geomagnetic field.  Any volume of magnetic material in 

the Earth’s crust can be considered as a continuous distribution of magnetic dipoles.  At 

any point on the Earth’s surface, the effects of all magnetic dipoles in the material can be 

summed to give a net change ∆B in the total geomagnetic field B. 
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Figure 3.  Vector representation of the geomagnetic field with and without a 
superimposed magnetic anomaly.  (adapted from Kearey and Brooks, 1991). 
 
 The magnetic dipoles in the material, excluding those in magnetic domains that 

exhibit remanent magnetization, will align with the present-day geomagnetic field by 

induction.  The resulting magnetic anomaly produced by the magnetic material is defined 

by the total magnetization vector of the material, J.  The amplitude of a magnetic 

anomaly is based on the magnitude of J, and the shape of the anomaly is affected by the 

direction of the J. 
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3-D DEPTH-TO-SOURCE METHODS 

 

 Automated depth-to-source interpretation techniques available today rely on the 

fact that magnetic fields (and gravitational fields) are three-dimensional potential fields.  

Magnetic fields are conservative, meaning the work done in moving a unit positive pole 

is independent of the path traversed and depends only upon the end points.  If the 

magnetic pole is eventually returned to its original position, the net energy expenditure is 

zero, regardless of the path followed.  The work done on a unit-positive pole in bringing 

it from infinity by any path against a magnetic field is the magnetic scalar potential  

(Telford et al., 1990). 

 In previous discussion, the magnetic field strength, H, was defined as the force 

exerted on a unit positive pole due to a pole of strength m at a distance r from the pole 

(Equation 2).  Accordingly, the magnetic potential V of a unit positive pole due to a pole 

of strength m at a distance r from the pole is given by 

rðì

mì
V

R

o

4
=                                                         (15) 

(Kearey and Brooks, 1991).  Whereas the magnetic field strength is a vector quantity, 

having both magnitude and direction, a magnetic potential is a scalar, having magnitude 

only. 

 Removing the direction by representing the field as a scalar provides 

computational flexibility (Kearey and Brooks, 1991).  The partial derivative of the 
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magnetic potential in any direction is simply the magnetic field component in that 

direction 

H = -∇V                                                           (16) 

(Telford et al., 1990).  In addition to providing the magnetic field component in any 

direction, the magnetic potential satisfies Laplace’s equation: 

∇2V=0                                                            (17) 

(Telford et al., 1990).  This property of potential fields allows a magnetic field to be 

determined over any arbitrary surface if the field is known completely over another 

surface, assuming that the observed surface is outside of the sources.  This is called 

continuation, and can be used to determine the field at a plane higher or lower than the 

plane of observation.  This idea is the origin of all automated depth estimation 

techniques. 

 Many of the automated techniques available today are capable of rapidly 

calculating depth estimates from large grids of data.  In most modern magnetic surveys, 

such as the one conducted for this study, magnetic field data are collected as a series of 

point values down a number of parallel lines over the survey area.  The spacing between 

these point values, however, is not constant and there are usually large gaps between 

adjacent lines of data.  A grid is an ordered array of magnetic field values at regularly 

spaced intervals.  When a grid is created, the magnetic field values are interpolated 

between gaps in a series of survey points.  A grid can be used to create visual 

representations of the magnetic field data such as contour maps, color images and shaded 

relief images. 
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 The three-dimensional automated depth-to-source interpretation techniques used 

in this study include Euler deconvolution (Thompson, 1982; Reid et al., 1990), the simple 

analytic signal (Nabighian, 1972, 1984; Roest et al., 1992), the horizontal gradient (Roest 

and Pilkington, 1993; Phillips, 2001), the enhanced analytic signal (Hsu et al., 1996; Hsu 

et al., 1998) and the local wavenumber (Thurston and Smith, 1997; Smith et al., 1998).  

These techniques were applied to gridded magnetic anomaly data over specific anomalies 

in the Tucson basin, and both depth and horizontal location of the magnetic contacts were 

determined. 
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Euler Deconvolution 

 The Euler deconvolution method relies on Euler’s homogeneity equation: 
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where (x0,y0,z0) is the position of a magnetic source whose total field T is detected at 

(x,y,z).  The total field has a regional value of B.  The degree of homogeneity N is 

interpreted as a structural index (SI) (Thompson, 1982; Reid et al., 1990). 

 Unlike many other computer-assisted methods before it, Euler deconvolution does 

not assume any particular geologic model.  The method can be applied and interpreted 

even when the geology cannot be properly represented by prisms or dikes.  Also, unlike 

previous methods, this method can be applied directly to gridded data (Thompson, 1982). 

 The structural index in Euler’s equation is a measure of the rate of change with 

distance of a field.  For a point dipole, the magnetic field strength decreases as the inverse 

cube of the distance, giving an index of three.  An effective vertical line source, such as a 

narrow vertical pipe, gives rise to an inverse square field falloff and an index of two.  

Extended bodies have indices ranging from zero, like that of an infinite sheet, to three 

(Reid et al., 1990).  Since Euler deconvolution does not make any assumptions about the 

geologic model, the user must choose the structural index that best fits the data. 

 For magnetic contacts, Thompson (1982) suggested that the index be less than 

0.5.  Reid et al. (1990) showed that this choice of an index for magnetic contacts leads to 

underestimates of depth.  They showed that the value for a sloping contact is zero, 
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provided that an offset A is introduced, and introduced a revised form of Euler’s 

equation: 

A
z

T
zz

y

T
yy

x

T
xx =

∂
∂−+

∂
∂−+

∂
∂− )()()( 000                               (19) 

where A incorporates amplitude, strike and dip factors which cannot be separated easily 

(Reid et al., 1990). 

 The three-dimensional forms of Euler’s equation (Equations 18 or 19) are easily 

applied to gridded data.  The first step is to calculate the total-field gradient in three 

orthogonal directions, äx, äy and äz (if these quantities are not already measured in the 

field) (Reid et al, 1990).  In most cases, the total magnetic field T is measured and plotted 

as a two-dimensional grid.  The horizontal gradients are found by using a finite-

difference approach.  A square 3×3 data window is passed over each grid point and the 

average differences between corresponding grid points in the x and y directions are 

determined (Cordell and Grauch, 1985).  The vertical derivative is calculated in the 

frequency domain using a Fourier transformation.  In the frequency domain, the Hilbert 

transform relationship allows the vertical derivative to be calculated when horizontal 

derivatives in two perpendicular directions are available (Nabighian, 1984; Roest et al., 

1992). 

 The second step is to place a moving square data window of size 3×3 or greater 

within the grids of the gradient values and of the field values.  For a non-zero structural 

index, all points in the data window are used to solve Euler’s equation (Equation 18) for 

the source position (x0,y0,z0) and a background value B (Reid et al., 1990).  Euler’s 
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equation is solved by creating an over-determined set of linear equations.  There are four 

unknowns in the equation (x0,y0,z0 and B) and a minimum of nine linear equations 

(resulting from the 3×3 data window).  The nine equations and the four unknowns are 

solved using a least-squares procedure.  The least-squares solution of the over-determined 

set of equations also yields estimates of the standard deviation of the parameter z0.  This 

quantity is treated as an “error bar” on the depth estimates (Thompson, 1982).  For a 

structural index of zero, the modified Euler’s equation (Equation 19) is used and the 

source position and arbitrary offset value A are solved (Reid et al., 1990). 

 All possible data window positions, including overlaps, are used to solve Euler’s 

equation.  Only those solutions that fall below a chosen threshold of the standard 

deviation of z0, usually 15% or less, are preserved.  All preserved solutions are then 

plotted in plan view, using symbols with sizes proportional to depth z (Reid et al., 1990). 

 The choice of a proper structural index is crucial in order to attain correct depths 

and converging solutions over magnetic contacts.  Reid et al. (1990) showed that an index 

that is too low gives depths that are too shallow, and an index that is too high gives 

estimates that are too deep.  They also found that even if the index is correct, depth 

estimates for high-index sources are more precise that those for low-index sources.  Gross 

structural trends, however, can still be outlined despite a poor choice of the index. 

 Real data sets are likely to contain anomalies from sources with various structural 

indices.  Therefore, it is necessary to solve for a range of indices and to plot the results 

for each index.  The correct index for a particular feature gives the best solution 

clustering and consequently the best depth estimates (Reid et al., 1990). 
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 The choice of the data-window size also greatly affects solutions to Euler’s 

equation.  If anomalies arising from more than one source occupy any given data 

window, poor fit statistics cause the solution to be rejected.  It is then reasonable to keep 

the search window as small as possible.  Conversely, broad anomalies arising from deep 

sources are poorly represented in a small data window, and unreliable estimates of depth 

and position of source are likely (Reid et al., 1990). 
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Simple Analytic Signal 

 The simple analytic signal A, or “energy envelope” of a three-dimensional 

magnetic anomaly is defined as 
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where T is the total magnetic field, i is the imaginary number and x̂ , ŷ , ẑ  are unit 

vectors in the principle Cartesian coordinates.  The real and imaginary parts of Equation 

20 form a Hilbert transform pair, which allows the vertical derivative to be easily 

calculated in the frequency domain when horizontal derivatives in two perpendicular 

directions are available (Nabighian, 1984; Roest et al., 1992).  The absolute value, or 

amplitude, of the simple analytic signal is given by  
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(Roest et al., 1992).  This function acts as the “envelope” of all possible phase shifts of an 

observed anomaly and peaks over magnetic contacts, regardless of the regional magnetic 

field direction, the source magnetization and the dip of the contact (Roest et al., 1992) 

(Figure 4).  The contacts, however, must be isolated and effectively two-dimensional.  

That is to say they have an effective infinite strike length (Thurston and Smith, 1997).  

The maximum amplitude of the analytic signal is dependant upon the intensity of 

magnetization, the inclination of the Earth’s field and the strike of the geologic boundary.  

This can make interpretation difficult if the geologic boundary is close to the magnetic 

equator or when its strike is near parallel to the magnetic north (Roest et al., 1992). 



   
  42 

 

 

Figure 4.  The two-dimensional simple analytic signal amplitude over a magnetic 
contact.  This function acts as the envelope of all possible phase shifts (i.e. 
magnetization directions) of an anomaly.  The individual curves inside the envelope 
represent different phase angles shifted in steps of 30 degrees (from Roest, et al., 
1992). 
 

 Since the amplitude of the simple analytic signal peaks over magnetic contacts, it 

can be used to find horizontal locations and depths of magnetic contacts.  This method of 

contact location is easily applied to gridded data.  The first step is to calculate a grid of 

the analytic signal amplitude from a magnetic anomaly grid.  The field gradients of the 

magnetic anomaly grid in two orthogonal horizontal directions, äx and äy, are calculated 

using a finite-difference approach.  A square 3×3 data window is passed over each grid 

point, and the average differences between corresponding grid points in the x and y 

directions are determined (Corde
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calculated in the frequency domain, making use of the Hilbert transform relationship.  

The amplitude of the analytic signal is calculated at each grid point using Equation 21, 

and a new grid is created. 

 The second step is to find crests in the analytic signal amplitude.  The peak values 

are located by placing a square data window of size 3×3 within the newly created grid 

and searching for local maxima.  Each grid intersection, except for marginal rows and 

columns, is compared with its eight nearest neighbors in four directions (along the row, 

column and both diagonals) to find any local maxima that are present.  If a local 

maximum is found, a more precise horizontal location and the magnitude of the 

maximum are found by interpolating a second-order polynomial through the trio of 

points.  The horizontal location xmax of the maximum relative to the position of the grid 

intersection point, gi,j is given by  
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and d is the distance between grid intersections.  The magnitude gmax of the analytic 

signal amplitude at xmax is given by 

jigbxaxg ,maxmaxmax ++= 2 .                                           (23) 
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The largest gmax and its corresponding xmax are chosen for grid intersections with more 

than one local maximum (Blakely and Simpson, 1986).  Another criteria for selecting the 

maxima is to use an index, N, which is defined as the number of valid maxima found in 

the 3×3 data window.  The N index gives an indication of the linearity of a maximum.  If 

N is 1, the anomaly is linear, but tilted; if N is 4, the maximum is a local peak.  Blakely 

and Simpson (1986) found that, in general, indices 2 and 3 were most useful. 

 The third step is to calculate the depths to the contacts once the locations of the 

crests in the analytic signal amplitude have been determined.  Phillips (1997) uses a 

similar approach to find maxima, but uses a 5×5 data window to locate both crests in the 

analytic signal amplitude and their strike directions.  An algorithm that finds the azimuth 

with the narrowest cross-section through the maximum is assumed to be perpendicular to 

the strike of a linear anomaly (Roest et al, 1992).  Once the crests and their associated 

strike directions are known, data within the window and within a belt perpendicular to the 

strike can be used to determine the depth of the contact by performing a least-squares fit 

to the theoretical shape of the amplitude of the two-dimensional simple analytic signal 

over a contact (Phillips, 2001).  This curve is given by 
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with h being the horizontal distance to the contact, d the depth to the top of the contact 

and α a constant (Nabighian, 1972).  Alpha is the product of the susceptibility contrast 

across the magnetic contact, the Earth’s magnetic field strength and inclination, and the 

angle between magnetic north and the positive x-axis.  The least-squares fit provides an 
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estimate of both the depth and its standard error, which can be expressed as a percentage 

of the depth.  A poor fit may be an indication of poor data quality or the interference of 

multiple anomalies (Roest et al., 1992).  Phillips (1997) recommends retaining only those 

solutions with standard errors of 15% or better in the final interpretation. 

 An assumption of thick sources establishes that the depth estimates obtained using 

Equation 24 represent minimum depths (i.e. depths to the top of infinitely thick sources).  

However, an assumption of thick sources is not always valid.  Due to the dipolar nature 

of magnetic fields, anomaly interference from the bottoms of magnetic contacts increases 

as source thickness decreases.  Depth calculations that are made over sources that are 

relatively thin will result in incorrect depth estimates.  It is possible to eliminate these 

interference effects by applying a pseudo-gravity transformation.  The pseudo-gravity 

transformation relies on Poisson’s relation, which shows that magnetic fields can be 

transformed into gravitational fields, and vice versa, for bodies in which the ratio of 

intensity of magnetization to density remains constant (refer to Baranov, 1957 for more 

on pseudo-gravity transforms).  This transform is a linear filter applied in the frequency 

domain that transforms the magnetic anomaly observed over a magnetization distribution 

into the gravity anomaly that would be observed if there were a similar distribution of 

mass density (Blakely and Simpson, 1986).  Since gravitational fields are not dipolar, 

gravity anomalies are due to the effects of the entire source body, not just its edges (i.e. 

top and bottom).  If the analytic signal amplitude of the pseudo-gravity field is used to 

solve Equation 24, the depth estimates will represent maximum depths to the top of 
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magnetic sources (Phillips, 1997).  For an infinitely thin source, this would be the same 

as the depth to the top of the source body. 
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Horizontal Gradient 

 The horizontal gradient method is the simplest approach to estimating magnetic 

contact locations and depths, because it does not require calculating vertical derivatives.  

Since it does not require the calculating vertical derivatives, it requires the greatest 

number of assumptions about the sources (Grauch and Cordell, 1987; Phillips, 2001).  If 

T is the total magnetic field and x and y represent two orthogonal horizontal directions, 

then the magnitude of the horizontal gradient HGM is defined as 
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(Cordell and Grauch, 1985).  The horizontal gradient magnitude is used as an 

approximation of the analytic signal amplitude over magnetic contacts (Roest and 

Pilkington, 1993).  This function peaks over magnetic contacts under the following 

assumptions:  the regional magnetic field is vertical, the source magnetizations are 

vertical, the contacts are vertical, the contacts are isolated and the sources are thick.  If 

any of the first four assumptions are violated, the peaks are shifted away from the 

magnetic contacts.  If the last assumption, that of thick sources, is violated, secondary 

peaks parallel to the contacts can appear (Roest and Pilkington, 1993; Phillips, 2001). 

 In order to satisfy the first two assumptions, it is necessary to apply a standard 

phase shift to the data known as reduction to the pole.  Reduction to the pole can be done 

with a Fourier transform and changes the phase of magnetic anomalies to represent 

anomalies arising from a vertical regional magnetic field (refer to Baranov, 1957 for 
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more on reduction to the pole).  Assuming the sources do not exhibit strong remanent 

magnetization, the source magnetizations will also become vertical (Phillips, 2001). 

 To apply this method to gridded data, the field gradients in two orthogonal 

directions, äx and äy, are calculated using a finite-difference approach.  Equation 25 is 

then solved for the magnitude of the horizontal gradient at each grid point, and a new grid 

containing the magnitude of the horizontal gradient is created.  Crests in the horizontal 

gradient magnitude are found by passing a 5×5 data window over the HGM grid and 

searching for local maxima in the same manner as in the simple analytic signal method.   

 When a crest is found and its local strike direction is determined, the source depth 

and its standard error are estimated by a least-squares fit perpendicular to strike to the 

theoretical shape of the two-dimensional horizontal gradient magnitude over a contact.  

This curve is given by 

22 dh

d
HGM

+
= α

                                                    (26) 

with h being the horizontal distance to the contact, d the depth to the top of the contact 

and α a constant defined by the susceptibility contrast across the magnetic contact, the 

Earth’s magnetic field strength and inclination, and the angle between magnetic north and 

the positive x-axis (Phillips, 2001).  This function has a bell shape over contacts that is 

similar to that of the analytic signal (Roest and Pilkington, 1993) (Figure 5). 
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Figure 5.  The two-dimensional horizontal gradient magnitude over a magnetic 
contact (modified from Roest and Pilkington, 1993). 
 
 This method also provides depth estimates representing minimum depths with the 

assumption of thick sources.  As with the simple analytic signal method, it is possible to 

assume very thin sources by using a pseudo-gravity transformation in lieu of a reduction 

to the pole.  If the analysis is done on the pseudo-gravity field, the depth estimates 

represent maximum depths (Phillips, 1997). 
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Enhanced Analytic Signal 

 Since potential-field data correspond to the superposition of effects from all 

causative sources, the determination of geologic boundaries usually suffers from nearby 

source interference.  This leads to offset magnetic contact locations and incorrect depth 

estimates (Hsu et al., 1996).  To reduce interference effects, it is necessary to increase 

anomaly resolution.  The simple analytic signal may not detect geologic boundaries and 

their proper depths sufficiently, because its bell-shaped function is broad over the 

boundaries.  Therefore, it has been suggested that taking high-order derivatives of the 

analytic signal will increase resolution and decrease interference effects (Nabighian, 

1972; Hsu et al., 1996). 

 The nth-order enhanced analytic signal An is defined as 
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where T is the total magnetic field, i is the imaginary number and x̂ , ŷ , ẑ  are unit 

vectors in the principle Cartesian coordinates.  The amplitude of the nth-order enhanced 

analytic signal is then given by 
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(Hsu et al., 1996).  All orders of this function peak over magnetic contacts, regardless of 

the regional magnetic field direction, the source magnetization and the dip of the contact.  
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The theoretical shape of the amplitude of the two-dimensional enhanced analytic signal 

over a contact is given by 

( ) ( ) 122

2!
++

=
nn

dh

n
hA

α
                                              (29) 

with h being the horizontal distance to the contact, d the depth to the top of the contact 

and α a constant defined by the susceptibility contrast across the magnetic contact, the 

Earth’s magnetic field strength and inclination, and the angle between magnetic north and 

the positive x-axis (Nabighian, 1972). 

 Hsu et al. (1998) suggested a series of equations to estimate the depths to 

magnetic contacts that are based on amplitude ratios of the peak values of different orders 

of the enhanced analytic signal.  These equations differ from one another by using 

different initial models.  Changing the initial model assumptions can improve the 

accuracy of depth estimation (Hsu et al., 1998).  Three initial models and their 

corresponding equations proposed by Hsu et al. (1998) include a step model with infinite 

thickness, a vertical-step model with finite thickness and a dike model.  The complete 

derivations of the following equations can be seen in Hsu et al. (1998). 

 For a two-dimensional step-like structure, the depth d can be estimated from the 

peak of nth-order enhanced analytic signal An in three ways: 
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(Hsu et al., 1998).  The depth estimates from the above equations are only valid when the 

bottom surface of the step model is at infinity.  Since this assumption is not realistic, 

some error will result.  However, the error generally decreases as the thickness of the step 

model increases (Hsu et al., 1998). 

 For the second model, a two-dimensional step-like structure with finite thickness t 

and a vertical-dipping face, the maximum amplitude of the analytic signal is given by the 

difference between a shallow, infinite step with depth d and a deep, infinite step with 

depth l.  These unknown parameters can be solved for with the following equations: 
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(Hsu et al., 1998).  In order for the depth d to be a meaningful solution, the maximum of 

the analytic signal must be due to a near-vertical step-like structure.  The following 

inequality must be true to satisfy the assumption: 

032 2
12 >− cc  

(Hsu et al., 1998).  The estimation of l is not very stable, however, due to the problem of 

a poor signal-to-noise ratio (Hsu et al., 1998). 

 The third model is that of a dike.  It was discovered that if the half-width between 

two edges is less than their depth, two maxima of the simple analytic signal amplitude 

from the two nearby parallel edges will merge to one (Atchuta Rao et al., 1981).  Since 

potential-field data represent the superposition of effects from multiple causative sources, 

a dike model can be regarded as the difference between two parallel step models with a 

fixed horizontal offset (Hsu et al., 1998).  Hsu et al. (1998) showed that the analytic 

signal amplitudes are symmetric about the center of a dike and are independent of the 

dipping angle.  The depth d and the half-width w of a dike model can be estimated from 
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(Hsu et al., 1998).  If the half-width is determined to be less than zero, then the peak of 

the analytic signal amplitude is not centered over a dike-like structure.  In this case, a step 

model should be used for estimating the depth (Hsu et al., 1998). 

 Hsu et al. (1998) found that higher order analytic signal ratios are generally less 

sensitive to finite thickness (Figure 6).  They also found that it was best to use amplitude 

values of the lower-order analytic signals at the locations defined by the maximum 

amplitudes of second-order enhanced analytic signal, since higher-order analytic signals 

suffer the least from interference effects (Hsu et al., 1996). 

 

Figure 6.  Plot of the ratio of thickness t to depth d below the observation level 
versus estimation error of depth d due to a vertical step model enhanced analytic 
signal approach (adapted from Hsu et al., 1998). 
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Local Wavenumber 

 The local wavenumber comes from The Source Parameter Imaging (SPI) method 

(Thurston and Smith, 1997), which extends the theory of the analytic signal by 

computing three complex attributes from which source parameters can be calculated.  In 

the case of spatial magnetic data, these attributes include the local amplitude (analogous 

to the analytic signal amplitude), local phase and local wavenumber.  The local 

wavenumber k is defined as the rate of change of the local phase θ of the total field T 

with respect to the horizontal (x and y) directions and can be expressed as 
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(Thurston and Smith, 1997). 

 The local wavenumber, like the analytic signal, peaks over magnetic contacts and 

is independent of the regional magnetic field direction, the source magnetization and the 

dip of the contact (Thurston and Smith, 1997).  The theoretical shape of the two-

dimensional local wavenumber over a contact is given by 

22 dh

d
k

+
=                                                        (39) 
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with h being the horizontal distance to the contact and d the depth to the top of the 

contact (Figure 7).  From this equation it, it is easily seen that directly over a contact the 

depth d to the top of the contact with infinite depth extent is the inverse of the peak value 

of the local wavenumber (Thurston and Smith, 1997). 

 

Figure 7.  The two-dimensional local wavenumber over a magnetic contact (adapted 
from Thurston and Smith, 1997). 
 
 The local wavenumber method, like the previous methods, assumes the initial 

model of a dipping contact with infinite thickness.  Phillips (1997) suggested that taking 

the vertical integral of the total magnetic field before calculating the local wavenumber 

would improve depth results for contacts with a finite thickness.  Smith et al. (1998) 

discovered, however, that taking second order derivatives of the magnetic field could be 

useful.  They introduced a higher order, or enhanced local wavenumber k′ that is defined 

as  
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This function also peaks over the magnetic contacts.  The only difference between k and 

k′ is a change in the amplitude factor, which is related to the structural index of the source 

body.  A model independent local wavenumber can be calculated by subtracting k from 

k′.  The depth d to the magnetic contact can then be calculated by taking the inverse of 

this value: 

kk
d

−′
= 1

                                                        (42) 

(Smith et al., 1998).  These depths are completely independent of any initial models, 

assuming the sources are effectively two-dimensional (Smith et al., 1998). 

 This method can be applied to gridded data in the same fashion as the other 

methods.  Higher order derivatives are calculated in the frequency domain.  The 

appropriate equation is solved for the local wavenumber at each grid point, and a new 

grid containing the local wavenumber is created.  Crests in the local wavenumber are 

then found by passing a 5×5 data window over the newly created grid and searching for 

local maxima.  When a crest is found and its local strike direction is determined, the 
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source depth and its standard error are estimated by a least-squares fit perpendicular to 

strike to the theoretical shape of the two-dimensional local wavenumber over a contact. 
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DATA ACQUISITION AND PROCESSING 

 

Instrumentation & Procedure 

The data used in this project comes from Sander Geophysics Limited (SGL) 

(Desmons, 1998).  SGL conducted a high-resolution aeromagnetic survey over the 

Tucson basin in Pima County, Arizona for the United States Geological Survey (USGS).  

The survey was flown in the fall of 1997, with the first production flight taking place on 

November 26, 1997 and the last one on December 19, 1997.  Thirty-four flights, totaling 

20,819 line-kilometers (12,936 miles) were required to complete the survey. 

The survey area extended from the city of Tucson in the north to the town of 

Green Valley in the south (Figure 8).  The corner coordinates that define the boundaries 

of the survey block are as follows:  latitude 31N45'00", longitude -111W05'00"; latitude 

32N20'00", longitude -111W05'00"; latitude 32N20'00", longitude -110W35'00"; latitude 

31N45'00", longitude -110W35'00".  These coordinates are given in the North American 

Datum 1927 (NAD-27), which uses the Clarke spheroid of 1866 to represent the shape of 

the Earth.  The origin of this datum is a point on the Earth referred to as Meades Ranch 

located in Kansas.  The survey consisted of 433 traverse lines oriented east-west and 5 

orthogonal control lines.  The flight line spacing was 150 meters, with control lines 

having a spacing of 12 kilometers.  The data were collected with a draped survey, with an 

optimum survey ground clearance of 152 meters. 
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Figure 8.  Aerial extent of aeromagnetic survey (within dashed lines) conducted over 
the Tucson basin by Sander Geophysics, Ltd (modified from Houser and Gettings, 
2000). 
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Both a ground and an airborne system, consisting of non-oriented optically 

pumped cesium split-beam sensors (refer to Telford et al., 1990 for more on optically 

pumped magnetometers) manufactured by Geometrics (Geometrics Model G-822A), 

were used during the survey.  The magnetometers have a sensitivity of 0.005 nT or better 

and an operating range of 15,000 to 100,000 nT.  Sensor noise is less than 0.02 nT.  The 

total-field magnetic measurements were digitally recorded at intervals of 0.1 second (10 

Hz) in the airborne system and 0.5 second (2 Hz) in the ground system. 

To compensate for the magnetic field created by the aircraft, an RMS 

compensator (RMS Model AADC 4000 MkII) was used.  The compensator is a fully 

automatic, 27-term compensator system utilizing a 3-axis fluxgate magnetometer for 

heading information.  Magnetic information was output at a minimum of 0.1-second 

intervals (10 Hz), with a resolution of 0.001 nT.  The system provided a complete real-

time compensation of the aircraft maneuver noise. 

Navigation and flight path recovery were provided by SGL’s navigation system, 

GPSNav.  The system utilized a NovAtel GPSCard 3951R 12-channel receiver mounted 

in a 486-based navigation computer with a sampling rate of 1.0 second (1 Hz).  The 

navigation system provided essential positional data, for both the ground and airborne 

magnetometers. 

Altimeter and ground clearance data were recorded using both an active radar 

system and a barometric pressure system.  The TRT radar altimeter has a resolution of 1 

meter, an accuracy of 2% and a range of 1 to 2,400 meters.  The barometric pressure 
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system has a resolution of 2 meters, an accuracy of +/- 4 meters and a range of 1 to 9,100 

meters. 

The following parameters were recorded during the course of the survey:  aircraft 

altitude as measured by the barometric altimeter at intervals of 0.25s; terrain clearance 

provided by the radar altimeter at intervals of 0.25s; a continuous video tape record of the 

terrain passing below the aircraft; airborne GPS positional data (latitude, longitude, 

height, time and raw range from each satellite being tracked), recorded at intervals of 

1.0s; time markers synchronously impressed on the video and digital data; airborne total 

magnetic field recorded with a 0.1s sampling rate; ground total magnetic field recorded 

with a 0.5s sampling rate; ground based GPS positional data, recorded at intervals of 1.0s.  

The combined magnetic/GPS ground station was installed at the airport near the hangar.  

The NAD-27 coordinates of the ground station were latitude 32N24'22.34", longitude -

111W12'57.13".  
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Data Reduction 

 All data reduction was performed by SGL (Desmons, 1998).  To remove 

random noise, ground magnetometer data were de-spiked automatically using a filter and 

spiker.  All ground station magnetometer data were then filtered using a 67-point low-

pass filter.  The airborne magnetometer data were corrected for diurnal variations in the 

geomagnetic field by subtracting the ground magnetometer values and adding the average 

value back in, using all the flights.  Intersections between the control lines and the 

traverse lines were determined by a program that interpolates the magnetic, altitude and 

X and Y values of the traverse and control lines at the intersection points.  Each control 

line was then adjusted by a specific constant value to minimize the following error for 

each traverse line: 

aiE −                                                            (43) 

where i is the individual intersection difference and a is the average intersection 

difference for that traverse line.  Individual control lines were subsequently adjusted to 

minimize local intersection differences, using groups of 11 adjacent traverse lines.  Line 

leveling was carried out by a program that interpolates and extrapolates leveling values 

for each point, based on the two closest leveling values.  Both traverse and control lines 

were leveled to ensure that all intersections tied with minimum error.  The International 

Geomagnetic Reference Field (IGRF) was removed from the leveled magnetometer data 

so that variations from this theoretical field were eliminated. 

 Because of the large spacing between control lines, the leveled magnetometer 

data is biased in the traverse line direction.  A decorrugation (or micro-leveling) 
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technique was used to improve the data.  First, the leveled magnetometer data were 

gridded, using a minimum curvature method and a 50-meter grid spacing.  Both the 

control and traverse lines were used to create the two-dimensional grid.  SGL’s 

decorrugation technique consists of a specialized frequency-domain filter:  a low-pass 

filter (500 m) in the traverse line direction and a high-pass (150 m) perpendicular to the 

traverse line directions.  The filtering procedure was implemented in the frequency 

domain by using a Fast-Fourier Transform (FFT).  The low frequency errors from the 

decorrugation grid were re-sampled to the line data and subtracted from the leveled 

magnetometer data. 

 The terrain clearance measured by the radar altimeter in feet were recorded at 4 

Hz and converted to meters.  The data were filtered to remove the high-frequency noise 

using a 67-point filter. 

 The navigational data were reformatted and recalculated to get positions in 

differential mode.  SGL’s GPS data processing package, GPSoft, was used to calculate 

differential GPS (DGPS) positions from raw range data obtained from the airborne and 

ground receivers.  The final location of the GPS ground station receiver was determined 

using a data set of corrections for selective availability from NRCan (Natural Resources 

Canada).  This technique provided a final receiver location with an accuracy of +/- 5 

meters.  The airborne data set was then reprocessed differentially using the new ground 

station location.  The positional data were recorded using the World Geodetic System 

1984 (WGS-84), which uses the geoid described by the Earth’s gravitational field and a 

datum defined by the center of mass of the Earth (Macomber, 1984).  Universal 
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Transverse Mercator (UTM) coordinates were subsequently determined using the 

standard central meridian for Zone 12N.  UTM is not a true map projection, but a 

coordinate system that divides the globe into sixty zones, each spanning six degrees of 

longitude.  Each zone has its own central meridian from which it spans 3 degrees west 

and 3 degrees east (Doyle, 1997).  Altitude data were also recorded in the WGS-84 datum 

and transformed to Mean Sea Level (MSL). 
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Derivative and Depth Calculations 

 Derivative and depth calculations were performed on an IBM compatible PC 

with a 750MHz AMD Athlon Processor and 765 MB of RAM running under Microsoft 

Windows 98.  All gridding was performed using Geosoft’s OASISmontaj (Geosoft, Inc., 

1998).  ASCII data received from Sander Geophysics Limited were imported into a 

Geosoft database.  Positional data, originally reported in the WGS-84 datum, were 

converted to the NAD-27 datum in UTM coordinates with the standard central meridian 

for Zone 12N in order to correspond with geologic and topographic maps available in that 

datum.  The leveled magnetic anomaly data were subsequently gridded using a bi-

directional line gridding algorithm (Geosoft, Inc., 1998).  To allow for the smoothest grid 

possible, a cubic spline (Smith and Wessel, 1990) was used to interpolate grid point 

values that lay between the data in both the down and across-line directions.  This spline 

worked well because of the high density of data. 

 All grids were displayed as shaded-relief images in order to show subtle 

changes in the data that may not be seen with other types of displays.  Unless otherwise 

noted, all shaded-relief images have an azimuth sun angle of 45 degrees declination, 45 

degrees inclination.  Due to the simulated illumination for the shaded-relief images and 

the inability to use color in this report, the grey-scale legend bars do not entirely match 

the grey-scale images.  The values and their associated shades of grey on the legend bars 

only match the parts of the images for which there is 100 percent illumination (i.e. 

surfaces facing the sun and not in the shadow of an adjacent high).  The legend-bar 

values should only be used to get an estimate of the range of data values in the image.  
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When appropriate, the amplitude range of specific anomalies, in nanoTesla, have been 

noted in the text.  Figure 9a is a grey-scale total-field magnetic anomaly map of the entire 

survey area.  To observe the effects that shaded relief has on a grey-scale image, Figure 

9b is a shaded-relief total-field magnetic-anomaly map of the same area. 
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Figure 9a.  Total-field magnetic magnetic anomaly map of the entire survey area. 
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Figure 9b.  Total-field magnetic magnetic anomaly map of the entire survey area.  
Shaded relief has been added. 
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 The first horizontal derivative grids, äx and äy, were calculated using a finite-

difference algorithm in OASISmontaj, which passes a 3×3 data window over the grid 

points and finds the derivatives by subtracting grid values in the corresponding directions 

and taking the average.  All other derivative grids, including the reduced-to-pole and 

pseudo-gravity grids, were calculated in the frequency domain using a Fast-Fourier 

Transform (FFT) algorithm that is found in OASISmontaj.  The Fourier transform grids 

were calculated using the default settings in OASISmontaj, which included a 10% 

increase in grid size, the removal of a 1st order trend based on the edge points, and 

maximum entropy grid filling (Burg, 1975) to match opposite sides of the grid to create a 

continuous signal.  After the specified filters were applied to the data in the frequency 

domain, the data were transformed back to the spatial domain and the original grid size 

and 1st order trend (if it was not removed by filtering) were restored.  The signals of 

interest were subsequently calculated by applying mathematical expressions to the 

derivative grids. 

 Many of the depth estimates were determined using potential-field geophysical 

software provided by the U.S. Geological Survey (Phillips, 1997).  The grids in Geosoft 

format were converted into USGS standard grids for use with the USGS software.  

Depths estimates using the simple analytic signal amplitude were calculated using 

ASDEP (Phillips, 1997).  The analytic signal amplitude grid was used as input, and the 

location, strike and depth of magnetic contacts were calculated using the procedure 

outlined in the previous section on the simple analytic signal method.  A depth-error 

threshold of ≤15% was used.  Depth estimates using the horizontal gradient magnitude 
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were calculated using HDEP (Phillips, 1997).  This program uses a similar procedure as 

ASDEP and has the same output.  A depth-error threshold of ≤15% was also used.  The 

same approach was used for depth calculations using the local wavenumber.  Here, the 

program LOCDEP (Phillips, 1997) was used, and a depth-error threshold of ≤15% was 

also used. 

 Output from ASDEP, HDEP and LOCDEP is in the form of a USGS post file 

that includes x and y locations, calculated depths, calculated depth errors and strikes.  The 

post files were imported into an OASISmontaj database.  Strike data were converted into 

vector information for the purpose of plotting.  The vector information was used to plot 

headless arrows on a map with their centers at the calculated locations.  The headless 

arrows were used to display the calculated strikes appropriately.  All preserved depth 

solutions were then plotted in plan view, using symbols that were proportional in size to 

the depths (Appendices A, B and C).  Solutions not of interest (i.e. those solutions not 

over the contacts of interest) were masked out by creating a polygon mask within 

OASISmontaj and applying the mask to the data. 

 Depth estimates for the enhanced analytic signal and the enhanced local 

wavenumber were not calculated using the USGS potential-field software.  However, the 

locations and strikes of the magnetic contacts were determined by inputting the second 

order analytic signal amplitude grid and the first order local wavenumber grid into 

ASDEP and LOCDEP, respectively.  A depth-error threshold of ≤50% for the second 

order analytic signal magnitude grid was used instead of ≤15% in order to acquire a 

significant number of solutions.  The second order analytic signal amplitude does not 
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have the same shape as the simple analytic signal amplitude over magnetic contacts (see 

Equations 24 and 29).  Therefore, the calculated error is not indicative of the reliability of 

the depth solution, and a threshold of ≤15% does not yield a sufficient number of 

solutions.  A threshold of ≤15%, however, was used for the second order local 

wavenumber.  The higher order local wavenumber differs only in amplitude and not in 

shape from the first order analytic signal (Smith et al., 1998).  Depth estimates for the 

enhanced analytic signal method were calculated by sampling the lower order analytic 

signal amplitude grids at the locations of the second-order analytic signal amplitude 

peaks and then using the appropriate equations to solve for depth.  For coordinates that 

did not correspond to exact grid point locations, the data values were interpolated using a 

linear interpolation.  Depth estimates for the enhanced local wavenumber method were 

calculated by sampling the simple local wavenumber at the locations of enhanced local 

wavenumber peaks and using Equation 42 to solve for depth.  The strikes and depths 

were plotted in the same manner as in the other methods. 

 Euler depth estimates were calculated using the Euler deconvolution algorithm 

that is included in OASISmontaj (Geosoft, Inc., 1998).  A data-window size and 

structural index were chosen based on the size of the anomaly and geometry of the 

causative source, respectively.  A depth-error threshold of ≤15% was used.  All preserved 

solutions were then plotted in plan view, using symbols that were proportional to the 

depths. 

 For the three test sites that were used in this study, the flight elevations were 

assumed equal to the depth to the magnetic contacts.  The radar altimeter data were 
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gridded at 50 meters using the same bi-directional gridding algorithm that was used for 

the magnetometer data.  At the calculated depth coordinates, the radar altimeter grid was 

sampled to provide an approximated flight elevation.  The sampled radar altimeter data 

were subsequently subtracted from the depth estimates.  The resulting values were used 

to provide a depth-to-source error for each calculated depth estimate using the following 

equation: 

ationFlightElev

ationFlightElevDepthCalculated
Error

−= .                            (44) 

Negative errors represent depth estimates that are too shallow.  Positive errors represent 

depth estimates that are too deep. 

 To see how preprocessing of the data would affect depth calculations, 

calculations were performed over the test sites using high-pass filtered magnetic anomaly 

data as well as the total-field magnetic anomaly data.  Applying a high-pass filter to the 

total-field anomaly data was done to remove deeper-source magnetic anomalies that may 

be interfering with the anomaly of interest.  A high-pass Butterworth filter with a cutoff 

wavelength of 2500 meters/cycle was applied to the gridded total-field magnetic anomaly 

data.  This particular filter allows the user to control the degree of filter roll-off by 

inputting a constant that defines the degree of the function.  An 8th degree function was 

used for the high-pass filter.  These filter parameters removed most of the deeper-source 

signal amplitudes while preserving the entire signal of the anomalies of interest in this 

study. 
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 In addition to calculating depth estimates using high-pass filtered data, depth 

estimates were calculated using pseudo-gravity anomaly data, of both the total-field and 

residual-field magnetic anomaly data, to compare maximum with minimum depths using 

the horizontal gradient and simple and enhanced analytic signal methods.  A declination 

of 11.8 degrees, an inclination of 59.2 degrees, a density contrast of 1 g/cc and a 

magnetization of 0.5 gauss (50,000 nT) were used as the input parameters for the pseudo-

gravity transform filter. 
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TEST SITES 

 

Los Reales Landfill 

 The Los Reales Landfill, located in southeastern Tucson (Figure 10), is a public 

landfill operated by the City of Tucson.  It is nearly 1100 by 800 meters in aerial extent 

and is continuing to grow.  Its topographic expression is one of a large semi-rectangular 

flat-topped mound, with a height of more than 20 meters (Figure 11).  Surrounding the 

central mound are areas of excavation that are nearly 20 meters deep.  These are sites of 

future dumping, which will presumably be filled up to the height of the central mound 

and covered over with fill dirt.  A vertical profile through the center of the landfill would 

reveal a football-shaped geometry, fat in the middle and pinching out at the ends. 

 The landfill is relatively isolated from any other shallow magnetic sources, 

since it is located away from the center of town and associated cultural noise.  The 

magnetic expression of the landfill is one of a nearly perfect dipole with a declination 

around 12 degrees (i.e. the same as the local reference field).  The magnetic field is 

considered to be induced with little or no remanent magnetization and has a total range in 

amplitude of nearly 824 nT, peak to trough (Figure 12).  The field anomaly is the result 

of a random distribution of ferrous materials buried within the landfill.  Random 

orientations of these ferrous materials result in an overall cancellation of any remanent 

magnetizations that may exist, and only the induced components of the total 

magnetization vectors remain.  This distribution of ferrous materials can be considered 

similar to a distribution of ferric minerals found in a geologic body such as an ore  
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Figure 10.  Location of the Los Reales Landfill in southeastern Tucson (modified 
from TopoZone, 2000). 
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Figure 11.  Topographic map created from radar altimeter and elevation data 
collected during the survey over the Los Reales Landfill. 
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Figure 12.  Total magnetic field anomaly map over the Los Reales Landfill. 

 

deposit.  This makes the landfill a perfect target for testing depth-to-source calculations 

on a shallow source with a purely induced field. 

 The magnetic contact locations were considered to be where the landfill pinches 

out at its edges.  These contacts surround the semi-rectangular mound structure and are 

effectively at ground level.  All of the methods discussed in this study were used to 
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calculate the depth to the magnetic contacts around the landfill, and a depth-to-source 

error was calculated using the flight height as the correct solution. 

 The reduced magnetometer data were gridded with a 5-meter grid interval using 

the bi-directional line gridding algorithm in OASISmontaj.  Before any derivatives were 

calculated, a 150-meter low-pass Butterworth filter, using an 8th degree function, was 

applied to the gridded data.  All signals were subsequently calculated from the low-pass 

filtered 5-meter grid.  The grids were re-gridded at a larger interval before any depths 

were calculated.  Before re-gridding, a low-pass linear convolution filter with a length of 

the new grid spacing was used in the direction of the grid lines.  For all but the local 

wavenumber methods, a 50-meter grid interval was used to find magnetic contacts.  For 

the local wavenumber methods, a 20-meter grid interval was used. 

 A structural index of 1 was used for Euler deconvolution, since the edges of the 

landfill have effectively two infinite dimensions and approximate the edges of a sill.  The 

search window size was set to 750 meters with a maximum search radius of 375 meters, 

which windowed enough of the anomaly to calculate the depth without including 

interfering anomalies.  For the enhanced analytic signal, the formula for an infinite step 

(Equation 32) was used to calculate the depth.  Table 1 summarizes the depth-to-source 

error results for each method.  Appendix A contains the maps of the specific signals used 

for each calculation with the relevant calculated strikes and depths plotted as lines and 

circles, respectively. 
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Table 1.  Depth-to-source error statistics for the Los Reales Landfill. 

  % 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
euler 6.1 7.6 35.9 0.5 0.5 240.0 -100.0 140.0 2261 
hpeuler 10.2 10.1 19.4 -0.3 0.0 110.4 -48.3 62.1 798 
hg -30.6 -29.8 8.1 -0.6 0.1 32.3 -45.4 -13.1 24 
hphg -32.4 -31.3 6.7 0.4 0.7 29.0 -42.3 -13.3 27 
sas -1.9 0.5 11.8 0.1 0.8 42.6 -13.5 29.1 20 
hpsas -5.9 -4.5 14.9 0.7 0.0 61.7 -36.0 25.7 18 
eas -10.4 -14.3 29.7 16.2 2.9 207.2 -65.7 141.5 47 
hpeas -11.1 -17.0 19.5 1.9 0.0 114.0 -65.0 49.1 52 
lwn -33.1 -36.2 20.1 -1.1 -0.3 71.8 -80.2 -8.4 57 
hplwn -39.3 -42.5 21.0 -0.8 0.0 82.9 -81.3 1.6 53 
vilwn -3.4 -1.8 28.3 -1.2 -0.1 94.6 -51.6 43.0 43 
hpvilwn -1.3 -1.0 28.2 -1.5 0.2 84.6 -39.0 45.5 44 
elwn 41.2 41.6 63.1 1.8 0.4 321.2 -91.1 230.0 36 
hpelwn 49.7 -11.3 146.9 3.6 -2.2 572.5 -490.8 81.7 46 
hgpg 11.2 12.3 18.7 -0.8 0.3 68.8 -14.8 54.1 44 
hphgpg 5.0 6.0 15.7 0.0 0.5 69.7 -25.9 43.9 44 
saspg 45.7 63.0 27.6 2.7 1.7 81.4 43.8 125.2 9 
hpsaspg 53.2 65.1 41.7 1.9 1.1 131.7 12.6 144.3 7 
easpg 36.1 36.0 10.0 -0.4 -0.3 39.3 12.5 51.8 38 
hpeaspg 25.0 27.7 17.2 2.1 1.1 90.5 -7.9 82.6 41 

euler  - euler deconvolution hp     - calculated from high-pass filtered data 
hg      - horizontal gradient  pg     - calculated from pseudo-gravity data 
sas     - simple analytic signal  vi      - calculated from  the vertical integral 
eas    - enhanced analytic signal 
lwn      - local wavenumber 
elwn    - enhanced local wavenumber  

 

 Figure 13 shows the depth-to-source error histograms for all of the methods 

used.  The histogram for Euler deconvolution reveals that most of the depth estimates 

(56%) are too deep.  Nearly two-thirds of the total number of depth estimates, many of 

which occur in a “tail” in the error distribution towards deeper solutions, were eliminated 

when a high-pass filter was applied to the magnetic anomaly data before calculating 

depth estimates.  The high-pass filter resulted in a distribution that is closer to a normal 

distribution, but still with most of the depth estimates (69%) occurring too deep.  All of 

the depth estimates from the horizontal gradient and local wavenumber methods, when 
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applied to the total-field magnetic anomaly data, are too shallow, with no depth estimates 

occurring on the positive side of the error distributions.  Filtering seems to have had little 

effect on the number and distribution of depth estimates, apart from the removal of a few 

deeper estimates.  For the simple analytic signal method, most of the depth estimates 

(55%) are too shallow, but close to the true depth to source.  A high-pass filter  

introduced some shallower solutions and removed some deeper solutions, which caused 

the error distribution to be more evenly distributed about a common value and have a 

majority of depth estimates (56%) occurring too deep.  The enhanced analytic signal 

method resulted in most of the depth estimates (89%) occurring too shallow.  Filtering 

had little effect, except for the removal of a single deep solution that was far from the 

main distribution of error values.  Most of the depth estimates (56%) from the local 

wavenumber method applied to the vertical integral of the total-field magnetic anomaly 

data are too shallow, but distributed fairly evenly about a common value close to the true 

depth to source.  Applying a high-pass filter before calculating depth estimates resulted in 

the removal of shallower depth estimates and introduced a few deeper estimates, resulting 

in a nearly even distribution between depth estimates that are too deep and depth 

estimates that are too shallow (48% vs. 52%, respectively).  For the enhanced local 

wavenumber method, the error distributions are very sporadic.  Most of the solutions 

(83%) are too deep, with a few having errors greater than 100%.  Applying a high-pass 

filter resulted in the removal of many deep solutions.  However, filtering also introduced 

a few shallow solutions with error values less than –100%.  The resulting error 

distribution still has most of the depth estimates (74%) occurring too deep.  The 
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horizontal gradient method applied to the pseudo-gravity anomaly field resulted in most 

of the depth estimates (73%) occurring too deep.  Applying a high-pass filter to the data 

removed many of the deeper solutions and introduced more shallow solutions, resulting 

in depth estimates clustering around a value closer to the true depth to source, but still 

with most of the depth estimates (59%) occurring too deep.  The simple and enhanced 

analytic signal methods applied to the pseudo-gravity anomaly field yielded solutions that 

are much too deep, with no depth estimates occurring on the negative side of the error 

distributions.  A high-pass filter introduced both shallower and deeper solutions.  For all 

of the depth-to-source methods combined, most of the depth estimate (63%) are too deep, 

and the median depth-to-source error is around six percent. 
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Figure 13.  Depth-to-source error histograms for each method over the Los Reales 
Landfill. 
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Figure 13, cont… 
 

 



   
  85 

 

Figure 13, cont… 
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Figure 13, cont… 
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Black Mountain 

 Black Mountain, located southwest of Tucson on the San Xavier Indian 

Reservation (Figure 14), is made up of a series of Tertiary volcanic sequences (Middle 

Miocene to Oligocene) that are primarily flat-lying to gently-dipping flows of basalt and 

basaltic andesite, with interbedded sedimentary rocks and tuff (Drewes, 1980).  It is over 

eight square-kilometers in aerial extent.  Black Mountain’s topographic expression peaks 

at a height of nearly 290 meters above the valley floor (Figure 15).  (Note, all shaded 

relief images of the Black Mountain area have an azimuth sun angle of 315 degrees 

declination, 45 degrees inclination). 

 Black Mountain is located near the edge of the Tucson basin and away from the 

center of town and associated cultural noise.  Its magnetic expression is one of a reversed 

dipole, with a declination around 150 degrees.  The area is dominated by strong remanent 

magnetization and has a total range in amplitude of nearly 534 nT, peak to trough (Figure 

16).  The remanent field is the result of magnetite grains that formed while lava cooled in 

the presence of a geomagnetic field having a different orientation than today’s field.  The 

reversed anomaly of Black Mountain makes a perfect target for testing depth-to-source 

calculations on a shallow source with strong remanent magnetization. 

 The magnetic contact locations were considered to be where the volcanic 

sequences are truncated by the valley fill and where multiple flows possessing different 

remanent magnetizations are in contact.  These contacts are found within and surrounding 

the topographic expression of Black Mountain and are effectively at ground level.  All of 

the methods discussed in this study were used to calculate the depth to the magnetic 
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contacts around Black Mountain, and a depth-to-source error was calculated using the 

flight height as the correct solution. 

  

Figure 14.  Location of Black Mountain southwest of Tucson (modified from 
TopoZone, 2000). 
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Figure 15.  Topographic map created from radar altimeter and elevation data 
collected during the survey over Black Mountain. 
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Figure 16.  Total magnetic field anomaly map over Black Mountain.  The white 
outline borders the topographic expression of Black Mountain. 

 

 The reduced magnetometer data were gridded with a 10-meter grid interval 

using the bi-directional line gridding algorithm in OASISmontaj.  Before any derivatives 

were calculated, a 150-meter low-pass Butterworth filter, using an 8th degree function, 

was applied to the gridded data.  All signals were subsequently calculated from the low-

pass filtered 10-meter grid.  The grids were re-gridded at a larger interval before any 

depths were calculated.  Before re-gridding, a low-pass linear convolution filter with a 

length of the new grid spacing was used in the direction of the grid lines.  For all but the 
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local wavenumber methods, a 50-meter grid interval was used to find magnetic contacts.  

For the local wavenumber methods, a 20-meter grid interval was used. 

 The edges of Black Mountain have effectively two infinite dimensions but are 

suspected to be thicker than the edges of the landfill.  A structural index of 1 and 0.5 were 

used for Euler deconvolution to compare solution clustering and compare depth estimates 

for different structural indices.  The search window size was set to 750 meters with a 

maximum search radius of 375 meters, which windowed enough of the anomaly to 

calculate the depth without including interfering anomalies.  For the enhanced analytic 

signal, the formula for an infinite step (Equation 32) was used to calculate the depth.  

Table 2 summarizes the depth-to-source error results for each method.  Appendix B 

contains the maps of the specific signals used for each calculation with the relevant 

calculated strikes and depths plotted as lines and circles, respectively. 
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Table 2.  Depth-to-source error statistics for Black Mountain. 

         % 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
euler N=1 27.2 31.7 27.8 0.2 0.9 135.2 -19.8 115.4 1010 
hpeuler N=1 26.2 29.5 26.3 0.0 0.8 127.0 -16.4 110.6 1001 
euler N=0.5 -20.4 -14.9 22.0 1.2 1.2 125.4 -57.0 68.4 1115 
hpeuler N=0.5 -20.5 -14.8 21.5 1.1 1.1 117.0 -50.2 66.8 1077 
hg -33.5 -30.8 20.0 0.6 0.8 101.8 -68.2 33.6 91 
hphg -32.8 -32.1 18.6 0.6 0.7 96.5 -65.7 30.8 113 
sas 10.5 12.9 22.1 0.3 0.9 92.8 -18.3 74.4 35 
hpsas 8.1 12.3 25.4 1.0 0.4 131.4 -51.3 80.1 37 
eas -12.7 -13.5 19.4 -0.3 0.1 87.3 -49.0 38.2 67 
hpeas -13.0 -14.0 18.4 -0.7 -0.1 72.6 -51.4 21.2 78 
lwn -37.4 -37.1 30.7 -0.3 0.3 164.9 -89.4 75.5 190 
hplwn -48.4 -40.9 31.0 -0.1 0.6 160.7 -88.0 72.7 217 
vilwn -32.7 -25.5 34.9 -1.0 0.4 145.2 -86.1 59.1 151 
hpvilwn -10.7 -13.1 36.0 -1.0 -0.2 137.3 -85.6 51.7 128 
elwn -6.5 29.2 257.2 230.9 14.6 4310.9 -200.5 4110.5 278 
hpenlwn 25.8 38.6 97.5 68.8 6.9 1099.6 -69.6 1030.0 156 
hgpg 12.5 14.3 39.8 1.6 0.8 225.5 -65.8 159.7 111 
hphgpg -0.1 4.6 38.9 2.1 1.2 216.0 -60.4 155.7 129 
saspg 68.7 71.1 25.0 0.4 -0.2 117.3 3.2 120.5 47 
hpsaspg 75.3 76.7 23.9 -0.6 -0.2 99.5 18.6 118.2 42 
easpg 43.7 40.8 16.8 -0.6 -0.3 61.4 7.6 69.0 16 
hpeaspg 40.0 35.4 18.1 0.4 -0.9 70.8 -9.0 61.8 21 

euler  - euler deconvolution hp     - calculated from high-pass filtered data 
hg      - horizontal gradient pg     - calculated from pseudo-gravity data 
sas     - simple analytic signal  vi      - calculated from the vertical integral 
eas    - enhanced analytic signal N      - structural index 
lwn     - local wavenumber 
elwn    - enhanced local wavenumber  

 

 Figure 17 shows the depth-to-source error histograms for all of the methods 

used.  The histogram for Euler deconvolution using a structural index of 1 reveal that 

most of the depth estimates (92%) are too deep.  For an index of 0.5, most of the depth 

estimates (80%) are too shallow.  Applying a high-pass filter before calculating depth 

estimates seems to have had little effect on the number and distribution of depth estimates 

for both indices.  Most of the depth estimates from the horizontal gradient (91%) and 

local wavenumber (91%) methods are too shallow.  Filtering introduced more shallow 

depth estimates for the local wavenumber method and did not seem to have much of an 



   
  93 

 

effect on the results from the horizontal gradient method.  For the simple analytic signal 

method, most of the depth estimates (71%) are too deep, but close to the true depth to 

source.  A high-pass filter did not seem to affect the results very much, apart from the 

introduction of a single, very shallow depth estimate.  The enhanced analytic signal 

method resulted in most of the depth estimates (76%) occurring too shallow.  Filtering 

only removed a few deeper solutions.  Most of the depth estimates (72%) from the local 

wavenumber method applied to the vertical integral of the total-field magnetic anomaly 

data are too shallow.  Applying a high-pass filter before calculating depth estimates 

resulted in a greater number of deeper depth estimates that caused a fairly even 

distribution about a common value close to the true depth to source.  The majority of 

depth estimates (60%), however, are still too shallow.  For the enhanced local 

wavenumber method, the error distributions are very sporadic.  Most of the depth 

estimates (53%) are too shallow, and many solutions have errors greater than 100%.  

Applying a high-pass filter resulted in the removal of many shallow depth estimates, 

which resulted in most of the solutions (61%) occurring too deep.  The horizontal 

gradient method applied to the total-field pseudo-gravity anomaly data resulted in most of 

the depth estimates (63%) occurring too deep.  Applying a high-pass filter to the data 

removed many of the deeper solutions and introduced more shallow solutions, resulting 

in depth estimates clustering around a value closer to the true depth to source, but still 

with most of them (51%) occurring too shallow.  The simple and enhanced analytic 

signal methods applied to the total-field pseudo-gravity anomaly data yielded solutions 

that are much too deep, with no depth estimates occurring on the negative side of the 
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error distributions.  A high-pass filter introduced both shallower and deeper solutions.  

For all of the depth-to-source methods combined, most of the depth estimate (53%) are 

too deep, and the median depth-to-source error is around three percent. 
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Figure 17.  Depth-to-source error histograms for each method over Black Mountain. 
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Figure 17, cont… 
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Figure 17, cont… 
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Figure 17, cont… 
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Natural Gas Pipelines 

 Two parallel pipelines run through southeastern Tucson and provide the city 

with natural gas (Figures 18 and 19).  The pipelines are owned and maintained by the El 

Paso Natural Gas Company.  In the study area, the two pipelines strike at approximately 

30 degrees west of north, are separated by approximately six meters (20 ft) and are buried 

about one meter below the surface.  One of the pipelines is about 3/4 of a meter (30 in) in 

diameter, and the other has a diameter of about 2/3 of a meter (26 in).  Both pipelines 

possess cathodic protection, with a change in polarity occurring between the northwestern 

and southeastern sections of the study area. 

 The pipelines are relatively isolated from any other shallow magnetic sources, 

since they are located away from the center of town and associated cultural noise.  The 

magnetic expression of the pipelines is one of a dipole with a declination that appears to 

be perpendicular to the strike of the pipelines.  In the northwest, the dipole points to the 

northeast and has a declination of 30 degrees.  In the southeast, the dipole points to the 

southwest and has a declination of 210 degrees.  The magnetic anomaly has a total range 

in amplitude of nearly 15 nT, peak to trough (Figure 20).  The major component of the 

observed field anomaly is considered to be the result of the current that runs through the 

pipelines for cathodic protection, with a very small induced-magnetization component.  

This makes the pipelines perfect targets for testing depth-to-source calculations on a 

shallow source with a purely induced field as the result of an applied current. 

 Since the two pipelines are relatively close to one another and appear as one 

pipeline at the observation elevation, the magnetic contact locations were considered to  
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Figure 18. Location of the natural gas pipelines southeast of Tucson (modified from 
TopoZone, 2000). 
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Figure 19.  Topographic map created from radar altimeter and elevation data 
collected during the survey over the natural gas pipelines. 
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Figure 20.  Total magnetic field anomaly map over the natural gas pipelines. 

 

be at the outer edges of the two pipelines.  These contacts are effectively at ground level.  

All of the methods discussed in this study were used to calculate the depth to the 

magnetic contact above the pipelines, and an error was calculated using the flight height 

as the correct solution. 

 The reduced magnetometer data were gridded with a 10-meter grid interval 

using the bi-directional line gridding algorithm in OASISmontaj.  Before any derivatives 

were calculated, a 150-meter low-pass Butterworth filter, using an 8th degree function, 

was applied to the gridded data.  All signals were subsequently calculated from the low-

pass filtered 10-meter grid.  The grids were re-gridded at a larger interval before any 

depths were calculated.  Before re-gridding, a low-pass linear convolution filter with a 
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length of the new grid spacing was used in the direction of the grid lines.  For all 

methods, a 20-meter grid interval was used to find magnetic contacts. 

 A structural index of 2 was used for Euler deconvolution, since the pipelines 

have only one infinite dimension.  The search window size was set to 1000 meters with a 

maximum search radius of 500 meters, which windowed enough of the anomaly to 

calculate the depth without including interfering anomalies.  For the enhanced analytic 

signal, the formula for an infinite step (Equation 32) as well as the formula for a dike 

(Equation 35) was used to calculate the depth.  Table 3 summarizes the depth-to-source 

error results for each method.  Appendix C contains the maps of the specific signals used 

for each calculation with the relevant calculated strikes and depths plotted as lines and 

circles, respectively. 
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Table 3.  Depth-to-source error statistics for the natural gas pipelines. 

         % 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
euler 37.6 36.8 38.3 0.8 0.8 215.0 -25.5 189.5 626 
hpeuler 80.7 84.5 16.8 0.6 1.0 88.4 56.0 144.4 1644 
hg -30.8 -27.4 16.5 2.4 1.4 102.8 -63.1 39.7 781 
hphg -30.2 -31.5 11.3 3.2 0.4 91.4 -65.2 26.2 820 
sas -3.7 1.4 21.7 8.9 2.4 145.6 -29.3 116.4 156 
hpsas -3.4 -3.0 11.1 -0.4 0.1 50.1 -27.9 22.2 118 
step eas -68.7 -67.5 21.5 -0.5 0.5 96.4 -97.8 -1.4 203 
step hpeas -27.1 -34.9 20.8 -0.1 -0.8 89.3 -85.6 3.7 147 
dike eas -114.2 -123.4 104.0 4.3 -0.4 813.0 -607.8 205.2 202 
dike hpeas -24.6 263.5 5450.8 115.7 10.4 71572.1 -11389.6 60182.6 130 
lwn -27.6 -27.4 17.3 0.7 0.1 113.3 -79.3 34.1 227 
hplwn -23.2 -22.8 17.4 0.8 0.2 103.0 -73.0 30.0 267 
vilwn -54.8 -47.1 25.5 -0.2 0.9 108.5 -79.7 28.8 377 
hpvilwn 14.1 10.8 26.1 0.2 -0.1 139.4 -47.4 92.0 226 
elwn 82.9 109.6 118.4 6.1 1.9 810.5 -69.6 740.9 302 
hpelwn 65.4 64.4 29.5 1.3 0.1 200.9 -31.8 169.1 333 
hgpg 54.9 92.6 85.5 0.4 1.2 377.1 -18.6 358.5 246 
hphgpg -4.6 -4.9 6.6 3.2 -1.0 50.6 -36.8 13.9 388 
saspg 45.2 64.2 45.4 0.2 1.2 203.5 3.3 206.8 160 
hpsaspg 36.8 35.3 16.8 1.1 -0.7 87.2 -15.6 71.6 133 
step easpg -79.8 -76.8 15.4 9.1 2.3 89.4 -96.1 -6.7 43 
step hpeaspg -57.5 -56.0 17.6 2.8 0.9 118.3 -90.2 28.0 153 
dike easpg -111.6 -112.9 7.4 -0.9 -0.4 26.4 -128.4 -102.0 42 
dike hpeaspg -139.4 -152.2 37.7 1.8 -1.4 180.7 -285.8 -105.1 107 

euler  - euler deconvolution hp     - calculated from high-pass filtered data 
hg      - horizontal gradient pg     - calculated from pseudo-gravity data 
sas     - simple analytic signal  vi      - calculated from the vertical integral 
eas    - enhanced analytic signal step  - calculated using the infinite step model 
lwn     - local wavenumber dike  - calculated using the dike model 
elwn    - enhanced local wavenumber  

 

 Figure 21 shows the depth-to-source error histograms for all of the methods 

used.  The histograms for Euler deconvolution reveal that most of the depth estimates 

(78%) are too deep.  Applying a high-pass filter to the magnetic anomaly data before 

calculating depth estimates eliminated many of the shallower depth estimates and 

introduced many deeper estimates, resulting in all of the depth estimates occurring too 

deep.  Also, the number of depth estimates more than doubled after applying a high-pass 

filter.  Most of the depth estimates from the horizontal gradient (93%) and local 
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wavenumber (94%) methods are too shallow.  Filtering seems to have had little effect on 

the number and distribution of depth estimates.  For the simple analytic signal method, 

most of the depth estimates (61%) are too shallow, but close to the true depth to source.  

A high-pass filter removed both shallow solutions and many of the very deep solutions, 

which still resulted in most of the solutions (62%) occurring too shallow.  The step-model 

enhanced analytic signal method resulted in all of the depth estimates occurring too 

shallow.  Filtering removed many of the shallower solutions and introduced some deeper 

depth estimates, but nearly all of them (99%) remain too shallow.  The dike-model 

enhanced analytic signal method resulted in very sporadic error distributions, with many 

errors greater than 100% and less than –100%.  Filtering seems to have introduced even 

greater errors.  Most of the depth estimates (94%) from the local wavenumber method 

applied to the vertical integral of the total-field magnetic anomaly data are too shallow.  

Applying a high-pass filter before calculating depth estimates resulted in the removal of 

shallower depth estimates and introduced many deeper estimates, resulting in a 

distribution that is fairly even about a common value close to the true depth to source and 

most of the depth estimates (71%) occurring too deep.  For the enhanced local 

wavenumber method, most of the depth estimates (87%) are too deep and the error 

distributions are very sporadic with many errors greater than 100%.  Applying a high-

pass filter resulted in the removal of a few shallow solutions and introduced a few deep 

solutions and most of the depth estimates (98%) occurring too deep.  The horizontal 

gradient method applied to the pseudo-gravity anomaly field resulted in most of the depth 

estimates (95%) occurring too deep.  Applying a high-pass filter to the data removed 
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many of the deeper solutions and introduced more shallow solutions, resulting in depth 

estimates clustering around a value closer to the true depth to source and most of them 

(80%) occurring too shallow.  The simple analytic signal method applied to the pseudo-

gravity anomaly field yielded solutions that were all too deep.  A high-pass filter 

removed many of the deeper solutions and introduced a few shallower solutions, but still 

resulted in most of the depth estimates (95%) occurring too deep.  Both the step-model 

and dike-model enhanced analytic signal methods applied to the total-field pseudo-

gravity anomaly data yielded solutions that are much too shallow, with no depth 

estimates occurring on the positive side of the error distributions.  A high-pass filter 

introduced some deeper depth estimates, which are still too shallow, for the step model, 

while many shallower estimates were introduced for the dike model. 
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Figure 21.  Depth-to-source error histograms for each method over the natural gas 
pipelines. 
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Figure 21, cont… 
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Figure 21, cont… 
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Figure 21, cont… 
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DISCUSSION 

 

Gridding and Filtering 

 Through much trial and error, it was determined that careful attention to 

gridding and filtering was necessary to achieve good results.  This fact became even 

clearer as high-order derivatives of the gridded data were calculated. 

 The top image in Figure 22 is the simple analytic signal amplitude over the 

landfill that was calculated with a 5-meter grid of the reduced magnetometer data.  Line 

bias, due to the higher sampling in the along line directions as opposed to the across line 

direction, has introduced a lot of noise that has expressed itself as vertical striping in the 

image.  The bottom image in Figure 22 is the second order analytic signal amplitude 

calculated from the same data.  The signal is masked by high amplitude, high-frequency 

noise in both vertical and horizontal directions within the image.  It was necessary to 

remove any high-frequency noise that was present in the original data in order to reduce 

this computational noise. 
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Figure 22.  The simple (top) and second-order (bottom) analytic signal amplitudes 
over the Los Reales Landfill calculated from a 5-meter grid.  Notice the vertical 
stripes that are due to the down-line sampling bias. 
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 To reduce the introduction of computational noise, it was necessary to apply a 

low-pass filter to the data before any derivatives were calculated.  Applying a low-pass 

filter only in the down-line direction eliminated the vertical striping in the simple analytic 

signal image by compensating for the down-line sampling bias.  However, the second-

order analytic signal continued to suffer from high-amplitude noise.  Figure 23 shows the 

simple and second order analytic signal amplitudes over the landfill that were calculated 

after a Butterworth low-pass filter had been applied to the gridded magnetometer data.  

Most of the high amplitude noise has been eliminated from the signal.  A cutoff 

wavelength of 150 meters (same as the line spacing) and an 8th degree function were used 

as the filter parameters.  These parameters were chosen based on the Nyquist frequency 

of the line spacing.  Since the line spacing for the aeromagnetic data is 150 meters, any 

anomalies that have a wavelength smaller than 300 meters in the across-line direction are 

not properly represented in the gridded data.  It was reasonable, then, to eliminate all 

wavelengths smaller than 300 meters from the magnetometer data.  The anomalies of 

interest were much larger than this, so as not to be affected by the removal of such 

wavelengths.  The filter parameters used preserved more than 98% of the amplitude of 

anomalies having a wavelength of 300 meters and provided a smooth enough function to 

prevent the occurrence of Gibb’s phenomena (ringing in the data).  This made the line 

spacing a good choice for the cutoff wavelength when removing high frequency noise 

from the data using a Butterworth filter. 
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Figure 23.  The simple (top) and second-order (bottom) analytic signal amplitudes 
over the Los Reales Landfill calculated from a low-pass filtered 5-meter grid. 
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 It should be noted that applying a low-pass filter to the data before calculating 

derivatives will affect the resulting depth estimates.  The effects of such filtering can be 

seen in many of the depth-to-source error histograms (Figures 13, 17 and 21).  Many of 

the histograms show a “tail” towards deeper solutions that is not seen towards the 

shallower solutions.  The filter described previously should not, in theory, greatly affect 

the signals of interest due to the size of the anomalies relative to the filter parameters.  

However, the removal of smaller sources affects the resulting error distributions and may 

bias interpretation by implying that the source of interest is deeper than the true depth. 

  It is often suggested in the literature that the data be upward continued to 

reduce this noise (Reid et al., 1990; Hsu et al., 1998; Phillips, 2001).  However, for 

shallow sources such as those in this study, an upward continuation would not be 

appropriate.  An upward continuation in these cases would lead to a loss of valuable 

resolution and signal strength.  Figure 24 shows the total magnetic field anomaly due to 

the landfill at the flight elevation and at an upward continuation of 150 meters (same as 

the line spacing).  Although much of the noisy data has been removed, the total field at 

the upward continued level is less defined than that at the flight elevation and leads to 

fewer depth solutions (Figure 25). 
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Figure 24.  The total magnetic field anomaly due to the landfill at the flight elevation 
(top) and at an upward continuation of 150 meters (bottom). 
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Figure 25.  Comparison of the number of depth estimates using the simple analytic 
signal method over the landfill at the flight elevation (top) and at an upward 
continuation of 150 meters.  Both images were gridded at 50 meters and only depth 
estimates with errors less than 15% were retained. 
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 The choice of a proper grid spacing when calculating derivatives was also 

important in achieving good results.  It has been suggested that a distance of 1/4th to 1/3rd 

of the line spacing is the proper choice for the grid spacing when dealing with line data 

(Billings and Richards, 2000).  Since the line spacing of the aeromagnetic data is 150 

meters, a good choice for the grid spacing would be 50 meters.  Calculating derivatives at 

this grid spacing left much to be desired in terms of precision, however.  The top image 

in Figure 26 shows the second order analytic signal of the landfill that was calculated 

with a 50-meter grid spacing.  The bottom image was calculated with a 5-meter grid 

spacing, then re-gridded to 50 meters.  The noise and lack of precision for the 50-meter 

analytic signal was due to the finite-difference algorithm that calculated the spatial 

derivates.  A larger grid spacing encompassed too much of the curve and yielded poor 

results.  This becomes most evident when calculating higher-order derivatives.  It was 

best to grid the data at an interval that was small enough to incorporate most of the 

anomaly curvature.  Intervals less than one percent of the anomaly wavelength worked 

well. 

 After the derivatives and signals of interest had been calculated at a small grid 

interval, it was necessary to re-grid the data at a larger interval for the purpose of locating 

the magnetic contacts.  The choice of grid spacing was completely dependant upon the 

size of the search window used to find peaks in the signal of interest.  Most of the 

algorithms used in this study incorporated a 5×5 data search window, so it was necessary 

to choose a grid size that allowed the search window to cover enough of the signal peaks 

without covering adjacent peaks.  Choosing a grid size that was too small resulted in too 
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many solutions, many of which were over very localized peaks due to noise in the image.  

Choosing a grid size that was too large resulted in too few solutions because of 

interference between adjacent peaks (Figure 27). 
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Figure 26.  The second-order analytic signal amplitude over the landfill that was 
calculated with a 50-meter grid spacing (top) and calculated with a 5-meter grid 
spacing, then re-gridded at 50 meters (bottom). 
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Figure 27.  Comparison of the number of depth estimates using the simple analytic 
signal method over the landfill with different search-window sizes.  The top image 
was gridded at 25 meters (i.e. 125 meter search window) and the bottom image was 
gridded at 100 meters (i.e. 500 meter search window).  Only depth estimates with 
errors less than 15% were retained. 
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 Calculating derivatives introduced noise in the grid line directions.  The frequency 

and amplitude of this noise was proportional to the grid spacing itself, with a smaller grid 

spacing resulting in high frequency, lower amplitude noise.  It was necessary to smooth 

out this noise before re-gridding for the purpose of locating magnetic contacts.  This was 

done by applying a linear low-pass convolution filter in the grid line directions before re-

gridding.  The convolution filter used in OASISmontaj was designed using the method of 

Fraser et al. (1966).  The default length was as long as the specified cutoff wavelength, 

which produced a filter that exhibited a minimum of side effects, such as Gibb's 

phenomena.  The dashed line in Figure 28 is part of a profile of the second order analytic 

signal over the landfill that was calculated with a 5-meter grid.   The image was re-

gridded at the same grid spacing with a linear low-pass filter of length 20 meters applied 

in the grid line directions before re-gridding.  The solid line in Figure 28 is the same 

profile of the filtered image over the landfill.  All of the high frequency noise has been 

removed from the data, and the primary signal has been preserved. 

 
Figure 28.  Profile of the second order analytic signal amplitude over the Los Reales 
Landfill before and after applying a low-pass filter. 
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Best and Worst Methods 

 To determine which methods worked the best for estimating the correct depth to 

source, the distributions of the depth-to-source errors were examined.  The main 

assumption was that given a large enough sample of a population of depth estimates, the 

error values would be clustered around a central value, and the frequency of occurrence 

would decline away from this central point.  In many of the test cases, a bell-shaped 

distribution, one approaching a normal distribution, was evident where there were a 

significant number of depth-to-source errors obtained (Figures 13, 17, and 21). 

 Tables 1 through 3 provide values for skewness and kurtosis of the depth-to-

source error distributions for each method.  These values describe the shape and 

symmetry of a distribution and can be used to compare any distribution with a normal 

distribution.  Skewness is defined by the third statistical moment about the mean and 

describes the asymmetry of a distribution.  A normal distribution has a skewness value of 

zero.  A positively skewed distribution has a majority of values greater than the mean 

value, while a negatively skewed distribution has a majority of values less than the mean 

value.  Kurtosis is defined by the fourth statistical moment about the mean and describes 

the peakedness or flatness (i.e. weight of the tails) of a distribution.  In Tables 1 through 

3, a normal distribution has a kurtosis value of zero.  A positive kurtosis value describes a 

distribution that is peaked, while a negative value describes a distribution that is flat.  

Since there are no clear definitions of distributions for specific values of skewness and 

kurtosis (other than values of zero describing a normal distribution), these values should 

only be used to compare multiple distributions and to determine their relative proximity 
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to a normal distribution.  Also, it should be noted that these values only carry significance 

if there is a substantially large sample size (e.g. >30). 

 Each depth-to-source method was rated independently over each test site.  The 

rating was based on the median depth-to-source error for the particular method over the 

particular test site (Figure 29).  The median was chosen over the mean error as the 

determining value to compensate for any outliers that may exist far from the central 

distribution of depth errors.  In many cases, there were several outliers that clearly did not 

belong to the distribution of interest.  These error values were most likely due to noise in 

the original data, computational noise or depths from deeper sources.  The ratings of the 

depth-to-source methods over each test site ranged from excellent to very poor (Figure 

30) and were based on the following criteria: 

                                            median error ≤ 5%   → excellent 
                                  5% < median error ≤ 10% → good 
                                10% < median error ≤ 15% → fair 
                                15% < median error ≤ 50% → poor 
                                           median error > 50% → very poor. 
 
 The methods that yielded the best results, those rated fair or better, for all three 

test sites included the simple analytic signal method applied to the total and high-pass 

filtered magnetic anomaly field, the local wavenumber method applied to the vertical 

integral of the high-pass filtered magnetic anomaly field and the horizontal gradient 

method applied to the high-pass filtered pseudo-gravity anomaly field.  The natural gas 

pipelines may be considered a very special case, however, since their magnetic field is 

the direct result of an applied current.  This type of magnetic field does not behave in the 

same way as a magnetic field induced by a primary magnetic field.  If only the Los  



   
  125 

 

Median Depth Error

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

eu
le

r

hp
eu

le
r hg

hp
hg sa

s

hp
sa

s

ea
s

hp
ea

s

lw
n

hp
lw

n

vi
lw

n

hp
vi

lw
n

e
lw

n

hp
el

w
n

hg
pg

hp
hg

pg

sa
sp

g

hp
sa

sp
g

ea
sp

g

hp
ea

sp
g

al
l m

et
ho

ds

Depth Calculation Method

E
rr

or
 (%

)

Los Reales Landfill
Black Mountain
Natural Gas Pipelines

 
euler - euler deconvolution  hp    - calculated from high-pass filtered data 
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Figure 29.  Median depth error for each method over each target.  Negative error 
values represent depths that are too shallow, while positive error values represent 
depths that are too deep.  The step-model enhanced analytic signal depth error is 
shown for the natural gas pipelines.  The Euler depth error for Black Mountain is 
for a structural index of 1.  For all methods combined, the median error is not 
shown for the pipelines, since they are considered to be a special case and the error 
values vary drastically. 
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euler - euler deconvolution  hp    - calculated from high-pass filtered data 
hg     - horizontal gradient  pg    - calculated from pseudo-gravity data 
sas    - simple analytic signal   vi     - calculated from the vertical integral 
eas   - enhanced analytic signal  step - calculated using the infinite step model 
lw     - local wavenumber  dike - calculated using the dike model 
elw   - enhanced local wavenumber  

 

Figure 30.  Depth-to-source method ratings. 
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Reales Landfill and Black Mountain are considered, the horizontal gradient method 

applied to the total pseudo-gravity anomaly field and the step model enhanced analytic 

signal applied to the total and high-pass filtered magnetic anomaly field also yielded 

favorable results (Figure 30). 

 Applying a high-pass filter to the data before calculating depths did not provide 

a consistently better or worse result for all of the methods.  The expected result was that 

of fewer deeper solutions due to the removal of longer wavelength anomalies, and a 

tightening of the calculated depth distribution (i.e. smaller standard deviation).  However, 

this was not always the case (Figure 13, 17, 21 and Tables 1-3).  Only two methods 

appear to have benefited from this step.  The results from the local wavenumber method 

applied to the vertical integral of the magnetic anomaly field and the horizontal gradient 

method applied to the pseudo-gravity anomaly field greatly improved from this step over 

all three test sites.  Applying a high-pass filter to the data before calculating the depths 

via the local wavenumber method decreased the occurrences of shallow solutions and 

shifted the clustered depth values around a deeper central value.  For the horizontal 

gradient method, filtering decreased the occurrences of deep solutions and shifted the 

clustered depth values around a shallower central value. 

 Euler deconvolution only yielded good results over the Los Reales Landfill.  

Over Black Mountain, a structural index of 1 resulted in calculated depths that were too 

deep (26% to 27%), and a structural index of 0.5 resulted in depths that were too shallow 

(-20% to –21%).  Both indices appeared to give good solution clustering around the 

topographic expression of Black Mountain (Appendices B7, B8, B20 and B21).  This 
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illustrates the limitations of the method, in that selecting a proper structural index over 

complex structures is difficult.  Over the natural gas pipelines, a structural index of 2 

resulted in calculated depths that were too deep (38% to 81%).  Also, there seems to be a 

bimodal distribution of error values (Figure 21), possible due to the polarity reversal 

occurring in the pipelines.  These results may be due to a poor choice of the structural 

index and may show this method’s lack of effectiveness over sources with a complex 

magnetization.  A structural index of 2 provided good solution clustering over the 

pipelines (Appendices C7 and C19).  However, the anomaly is due the flow of electric 

current through the pipelines.  Without the presence of the Earth’s field, the magnetic 

field due to the pipelines would more closely resemble that of a gravitational field 

forming concentric circles around a cylindrical geometry (Figure 31).  This type of field 

is not properly described as a line of dipoles, as is assumed by using a structural index of 

2.  Although Euler deconvolution provides the largest number of solutions, it does not 

seem to work well when the source body is not a simple, known geometry or where the 

magnetization is complex. 

 The horizontal gradient and local wavenumber methods applied to the total and 

high-passed filtered magnetic anomaly field yielded depth estimates that were too 

shallow (-23% to –48%).  This was expected, however, as these two methods assume that 

the source body has infinite thickness.  The simple and enhanced analytic signal methods 

also make this assumption.  However, they do not seem to be as sensitive to source body 

thickness as does the horizontal gradient and local wavenumber methods.  When applied 

to the pseudo-gravity field to attain maximum depth estimates, the simple and enhanced  
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analytic signal methods yielded solutions that were too deep (25% to 75%), with the 

exception of the enhanced analytic signal method over the natural gas pipelines where the 

solutions were too shallow (-58% to –139%).  Over Black Mountain, the depths were 

deeper than the top of the magnetic sources, but because of complex geometry there was 

no way to verify whether or not these depths accurately depict the bottoms of some of 

these contacts.  

 The worst performance came from the enhanced analytic signal method, when 

assuming a dike model over the natural gas pipelines, and the enhanced local 

wavenumber method.  The enhanced local wavenumber method yielded good results over 

Black Mountain.  However, the standard deviation of error values about the mean is 

exceptionally high (Table 2).  This spread of the occurrence of depth estimates suggests 

that the median error is not indicative of a converging solution.  This is somewhat 

disappointing considering the method promises proper depth-to-source estimates 

Figure 31. Cross-section of the magnetic field due to a pipeline with cathodic 
protection.  Direction of current flow is into the image. 



   
  130 

 

regardless of the direction of magnetization and body geometry.  Both methods produced 

many erroneous solutions, with many depth estimates that resulted in errors much greater 

than ±100%.  The problem with these methods lies in the sensitivity of the equations used 

to calculate depth estimates for both methods (Equations 35 and 42).  In both methods, 

the depth to the magnetic contact is dependant upon the inverse of the difference of two 

values.  In all cases, these values were very small and proximal, which led to high 

computational error. 
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GEOLOGIC SITES OF INTEREST 

 

 After evaluating the performance of each method over the test sites, the 

methods that worked best were applied over geologic sites of interest within the Tucson 

basin.  Two sites that were of particular interest included a suspected occurrence of 

buried volcanics underneath the Los Reales Landfill and magnetic anomalies near the 

Mission Mine area (Figure 32) supporting the existence of a low-angle detachment fault.  

The simple analytic signal method, the local wavenumber method and the horizontal 

gradient method were used to determine the depths to the magnetic sources.  The 

enhanced analytic signal method was not used, however, since it did not perform as well 

as the other methods due to its susceptibility to noise. 
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Figure 32.  Location of the Mission Mine area (modified from TopoZone). 
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Buried Volcanics 

 Upon applying a high-pass Butterworth filter, using an 8th degree function and a 

cutoff wavelength of 2500 meters/cycle, to the gridded magnetic anomaly data over the 

landfill, a deeper, broader magnetic anomaly was discovered.  The anomaly is reversed 

with a declination of about 180 degrees and lies directly beneath the landfill (Figure 33).  

Closer examination of the area surrounding the landfill revealed several reversed 

magnetic anomalies that run across the area west of Tucson and into southern Tucson 

(Figure 34).  These anomalies are presumed to be the result of a sequence of now buried 

Tertiary volcanics, similar to those that comprise Black Mountain. 

 The reduced magnetometer data were gridded with a 10-meter grid interval 

using the bi-directional line gridding algorithm in OASISmontaj.  In order to isolate the 

reversed anomaly and to reduce any interference effects from deeper or shallower 

sources, a band-pass filter was applied to the data.  Before any derivatives were 

calculated, a 3000-meter high-pass and a 500-meter low-pass Butterworth filter, using an 

8th degree function, were applied to the gridded data.  All signals were subsequently 

calculated from the band-pass filtered 10-meter grid. 

 The simple analytic signal method did not yield any depths around the 

perimeter of the postulated buried volcanics due to the interference from the overlying 

landfill (Figure 35).  For the remaining methods, the depth below ground surface was 

determined by subtracting sampled radar altimeter grid data from the calculated depths.  

The grids were re-gridded at 80 meters to find the magnetic contacts.  Before re-gridding,  
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Figure 33.  High-pass filtered magnetic field anomaly map showing an apparent 
reversed anomaly beneath the Los Reales Landfill. 



   
  135 

 

 
Figure 34.  Map showing reversed anomalies just west of Tucson.  There are a 
number of reversed anomalies in this map that have not been labeled.  A band-pass 
filter has been applied to the magnetic data.   
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Figure 35.  Map of the simple analytic signal amplitude over the suspected buried 
volcanics.  There is interference from the analytic signal amplitude of the overlying 
landfill. 
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a low-pass linear convolution filter with a length of 80 meters was used in the direction of 

the grid lines. 

 Table 4 summarizes the depth-to-source error results for each method used.  

Figure 36 shows the depth-to-source histograms for all of these methods.  Figures 37 and 

38 are maps of the local wavenumber of the vertical integral of the magnetic anomaly 

field and the horizontal gradient magnitude of the pseudo-gravity field, respectively, with 

plots of the calculated strikes and depths. 

 

Table 4.  Depth-to-source statistics for the suspected buried volcanics.  Values 
represent depths below ground level. 

      (meters) 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
vilwn 189.4 196.6 77.9 -0.8 0.1 292.4 55.5 347.9 50 
hgpg 150.0 149.4 70.1 -1.0 0.2 259.8 27.3 287.1 53 

Average Median 
169.7 

hg      - horizontal gradient pg     - calculated from pseudo-gravity data 
lwn     - local wavenumber vi      - calculated from the vertical integral  
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Figure 36.  Depth-to-source histograms for each method over the buried 
volcanics(?).  Values represent depths below ground level. 
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Figure 37.  Depth-to-source map over the suspected buried volcanics using the local 
wavenumber method applied to the vertical integral of the total magnetic field 
anomaly. 
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Figure 38.  Depth-to-source map over the suspected buried volcanics using the 
horizontal gradient method applied to the pseudo-gravity anomaly field. 
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 The average median depth estimate suggests that the postulated volcanics are 

buried nearly 170 meters beneath the Los Reales Landfill.  Assuming there was a 

constant flight elevation of 152 meters and the average median depth estimate represents 

the correct depth to the magnetic source, the median depth estimates from both methods 

are within 12% of the total depth-to-source from one another. 

 It should be noted that there are two other possible explanations for the reversed 

anomaly beneath the landfill.  The regional field surrounding the landfill indicates the 

possibility of a magnetic “hole” in the area.  Two truncated blocks of magnetic material, 

one just to the north and the other just to the south of the landfill, would also appear as a 

reversed anomaly, assuming an induced magnetization in both blocks.  The southern 

block would reveal its south magnetic pole, while the northern block would reveal its 

north magnetic pole.  Such a scenario would occur if the landfill were overlying a graben 

that formed during the north-northwest extension that was responsible for the formation 

of the basin and range.  Another possible explanation for the reversed anomaly is that it is 

nothing more than an artifact of filtering.  The anomaly that surrounds the landfill could 

be due to Gibb’s phenomena (ringing in the data), since the amplitude of the landfill 

anomaly is considerably large.  However, several filtering parameters were used to test 

this hypothesis, and it was determined that the high-pass filter that was used has a smooth 

enough function to reduce or eliminate the occurrence of such artifacts. 
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Detachment Fault 

 The total-field magnetic anomaly data just east of the Mission Mine area 

(Figure 32) suggest the existence of a low-angle fault.  Surface expressions of such faults 

lie a few kilometers west and southwest of the Mission mine area (Drewes, 1980).  A 

distinct linear anomaly accompanied by a somewhat rounded dipole anomaly seems to be 

mirrored to the northeast, with an offset of approximately 6 kilometers between the 

centers of the magnetic highs in the two rounded anomalies (Figure 39).  The anomalies 

in the northeast are somewhat broader than those in the southwest, which implies their 

source bodies are at greater depth.  Given the geologic history of the Tucson basin, the 

anomalies may be due to an intrusive body that has been cut by a low-angle detachment 

fault, with the northeastern block sliding to greater depth with respect to the southwestern 

block.  Attaining depths to the magnetic source bodies in the northeast and southwest will 

provide a clue to the amount of fault movement that may have occurred in the area. 

 The reduced magnetometer data were gridded with a 10-meter grid interval 

using the bi-directional line gridding algorithm in OASISmontaj.  In order to isolate the 

anomalies of interest and to reduce any interference effects from deeper or shallower 

sources, a band-pass filter was applied to the data.  Before any derivatives were 

calculated, an 8000-meter high-pass and a 500-meter low-pass Butterworth filter, using 

an 8th degree function, were applied to the gridded data.  All signals were subsequently 

calculated from the band-pass filtered 10-meter grid. 
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Figure 39.  Total field magnetic anomaly map showing the apparent offset of similar 
magnetic anomalies east of the Mission Mine area. 
 

 The depth estimates over the rounded dipole anomalies in the northeast and the 

southwest were analyzed separately.  The depth below ground surface was determined by 

subtracting sampled radar altimeter grid data from the calculated depths.  The grids were 

re-gridded at 80 meters to find the magnetic contacts.  Before re-gridding, a low-pass 

linear convolution filter with a length of 80 meters was used in the direction of the grid 

lines. 

 Table 5 summarizes the depth-to-source results for each method used.  Figure 

40 shows the depth-to-source error histograms for all of these methods.  Figures 41 

through 44 are the specific signal used for each calculation with the relevant calculated 

strikes and depths plotted as lines and circles, respectively. 
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Table 5.  Depth-to-source statistics for the detachment fault.  Values represent 
depths below ground level.  The top table represents the shallow anomaly to the 
southwest, while the bottom table represents the deeper anomaly to the northeast.  
The “Average Median” does not take into account the results from the horizontal 
gradient method applied to the pseudo-gravity field. 

       (meters) 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
sas 281.0 280.0 77.0 -0.9 -0.3 275.0 117.6 392.6 30 
vilwn 263.5 249.7 105.9 1.6 -0.6 580.0 -41.7 538.3 45 
hgpg 641.7 581.6 213.3 -1.6 0.1 630.9 299.4 930.4 46 
hg 216.5 224.1 67.2 -0.2 0.5 302.7 82.8 385.5 61 

Average Median 
253.7 

hg      - horizontal gradient  pg     - calculated from pseudo-gravity data 
sas     - simple analytic signal  vi      - calculated from the vertical integral 
lwn      - local wavenumber  
 
       (meters) 
 Method Median Mean Standard Dev. Kurtosis Skewness Range Minimum Maximum Count 
sas 386.8 392.7 178.7 -0.1 0.4 707.9 69.5 777.4 38 
vilwn 351.5 361.9 189.5 -0.5 0.3 760.4 20.2 780.7 68 
hgpg 911.1 836.7 257.2 1.4 -1.6 877.1 245.5 1122.6 27 
hg 379.6 365.9 188.9 0.8 0.4 921.3 19.3 940.6 92 

Average Median 
372.6  
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Figure 40.  Depth-to-source histograms for each method over the detachment fault.  
Values represent depths below ground level. 
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Figure 40.  cont… 
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Figure 41.  Depth-to-source map over the detachment fault using the simple analytic 
signal method. 



   
  148 

 

 
Figure 42.  Depth-to-source map over the detachment fault using the local 
wavenumber method applied to the vertical integral of the total magnetic field 
anomaly. 
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Figure 43.  Depth-to-source map over the detachment fault using the horizontal 
gradient method applied to the pseudo-gravity anomaly field. 
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Figure 44.  Depth-to-source map over the detachment fault using the horizontal 
gradient method applied to the reduced-to-pole magnetic anomaly field. 

 

 The horizontal gradient method applied to the pseudo-gravity field yielded 

depth estimates that were much deeper than those by the simple analytic signal and local 

wavenumber methods (Figures 41 through 43).  Since the horizontal gradient method was 

applied to the pseudo-gravity field, the depth estimates represent maximum depths with 

the assumption of thin sources.  The large difference in depth estimates suggests that the 

source bodies are rather thick.  The anomalies are most likely due to faulted igneous 

intrusions that initially extended deep within the crust.  To compare minimum with 

maximum depth estimates, the horizontal gradient method was also applied to the 

reduced-to-pole magnetic anomaly field (Figure 44 and Table 5).  The resulting depth 
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estimates were closer to those from the other methods.  It may be possible to determine 

whether or not a source body is significantly thick just by comparing the depth estimates 

obtained by using the simple analytic signal method with those obtained by using the 

horizontal gradient method applied to the pseudo-gravity field.  A large spread between 

the two sets of depth estimates seems to indicate significantly thick sources.  In these 

cases, the horizontal gradient method applied to the reduced-to-pole magnetic anomaly 

data would produce depth estimates closer to the true values, since the depth estimates 

using this approach represent minimum depths to thick sources. 

 Since the sources are assumed thick, the maximum depth estimates obtained 

using the horizontal gradient method were not included in the final analysis.  The average 

median depth estimate suggests that the tops of the intrusive bodies are offset by nearly 

119 meters.  The top of the source body in the southwestern block is approximately 254 

meters below the surface, and the top of the source body in the northeastern block is 

approximately 373 meters below the surface.  Assuming there was a constant flight 

elevation of 152 meters and the average median depth estimate represents the correct 

depth to the magnetic source, the extreme median depth estimates from all three methods 

over the southwestern block are within 16% of the total depth-to-source from one 

another.  Over the northeastern block, this spread is under 7%. 

 A surface expression of a fault exists approximately 7 kilometers southwest of 

the shallow rounded anomaly, where Proterozoic rocks lie adjacent to Tertiary rocks 

(Drewes, 1980).  If this fault is responsible for the two offset anomalies, a depth of 254 

meters to the top of the source body causing the southwestern anomaly gives a fault dip 
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angle of approximately 2.1 degrees.  This dip angle is exceptionally small (and unlikely), 

and does not match the dip angles of other surface faults in the area.  Also, a dip angle of 

2.1 degrees would give a thickness of 104 meters for the source body causing the rounded 

anomaly to the northeast.  This thickness results in a depth to the bottom of the source 

body that is only about 20% deeper than the determined depth to the top of the source (as 

measured from a flight height of 152 m).  The depth estimates from the horizontal 

gradient method applied to the pseudo-gravity field suggest that the source body is much 

thicker than this.  A more likely scenario is a buried fault closer to the rounded anomaly 

to the southwest, with a dip angle that is much greater than 2.1 degrees.  A fault nearly 3 

kilometers west of Mission Mine has a dip angle of 21 degrees (Drewes, 1980).  

Assuming the fault responsible for the offset rounded anomalies is buried just beneath the 

surface (i.e. effectively at ground level) and the dip angle is also 21 degrees, the surface 

fault scarp would lie approximately 662 meters southwest of the center of the rounded 

southwestern anomaly and the thickness of the source body responsible for the 

northeastern anomaly would be approximately 2,184 meters.  This thickness yields a 

depth to the bottom of the source body that is more than five times the depth to the top of 

the source, which is consistent with the results from the horizontal gradient method.  The 

throw of such a fault is 2,303 meters.  Since this theoretical fault is buried at some depth, 

and the exact dip angle of the fault is unknown, the throw of the fault could be 

considerably higher or lower than this value. 
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CONCLUSIONS 

 

Depth Calculation Guidelines 

 After much trial and error and testing various methods over targets in the 

Tucson basin, several guidelines have been devised to aid in the calculation and 

interpretation of three-dimensional depth-to-source estimates using automated techniques 

on gridded potential-field data.  In particular, these guidelines apply to calculating depths 

to shallow sources using magnetic data.  Following these simple rules will help to reduce 

the occurrence of false depth estimates: 

1. Eliminate sampling bias and high-frequency data not of interest by applying a 

low-pass filter to the data.  This will prevent much unwanted noise when 

calculating derivatives.  An upward continuation is not a good idea, however, 

because too much anomaly resolution is lost. 

2. Apply a high-pass filter to the data when interference from deeper sources is 

suspected.  Applying a high-pass filter over the test sites did not always improve 

the results, but the drawbacks were small and far outweighed by the benefits. 

3. Calculate the derivatives at a small enough grid spacing to encompass the 

anomaly curvature.  A spacing less than one percent of the anomaly wavelength is 

a good choice.  This will prevent noise due to problems arising from using a finite 

difference algorithm to calculate derivatives.  Also, at small grid spacings, any 

noise introduced when calculating derivatives will be relatively high frequency, 
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low amplitude in nature and can be easily removed before finding peaks in the 

signal of interest. 

4. Remove the noise in the derived signal grids by applying a low-pass filter in the 

grid-line directions.  This allows for a smoother grid and a better chance of 

finding the correct peak values. 

5. Re-grid the derived signal grids at a spacing that enables the search window to 

encompass the peak values without covering more than one peak at a time.  This 

can be accomplished by visually examining the width of the gridded signal peaks 

of interest.  If a poor choice of grid spacing and associated window size is used, 

too few or too many solutions will result.  

6. The simple analytic signal method, the local wavenumber method applied to the 

vertical integral of the magnetic field, and the horizontal gradient method applied 

to the pseudo-gravity field (for thin sources) should be used to determine the 

depth to shallow magnetic sources.  If the sources are thick, the horizontal 

gradient method applied to the reduced-to-pole magnetic data rather than to the 

pseudo-gravity field will provide better solutions.  The enhanced analytic signal 

should be used with caution and only when you can’t resolve the source edges due 

to interference effects, since it requires calculating high-order derivatives and is 

quite noisy.  Also, it is important to remember that the contact locations 

determined by the horizontal gradient method will be offset if there is any 

remanent magnetization. 
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 Although these rules were derived from calculations made with gridded data, 

they may also be applied to profile data.  The advantage of gridded data over profile data, 

of course, lies in the fact that a profile can be chosen in any direction over a specified 

target.  It should also be noted that there are no substitutes for modeling to attain depths 

to magnetic sources.  In this study, it was necessary to apply much filtering to the total-

field magnetic anomaly data in order to achieve correct depth estimates.  However, 

filtering does not always separate the regional field and interference from nearby sources 

from the anomaly of interest very effectively, as was seen in the analytic signal amplitude 

over the buried volcanics.  Also, filtering may remove part of the signal of interest and 

the true effects of filtering on the data are not always known.  Modeling the regional field 

as well as nearby sources is required to fit the true data and adds a higher degree of 

certainty to the depth estimates.  The automated interpretation techniques examined in 

this study should only be used to get a general idea of the magnetic contact locations and 

depths in large data sets.  Potential-field modeling should be performed over individual 

anomalies of interest to honor the data and achieve the best depth estimates. 
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Suggested Improvements 

 There remains a need for testing over additional targets, preferably over sources 

with several different body geometries, depths and magnetizations, to get a better feel for 

the overall performance of these depth-to-source methods.  In addition, the problems of 

remanent magnetization leading to offset contact locations when using the horizontal 

gradient method and a lack of a proper constraint for retaining correct depth solutions 

provided by the enhanced analytic signal method need to be addressed. 

 Applying a pseudo-gravity transformation to data in this study with parameters 

corresponding to the ambient geomagnetic field resulted in reasonable depth estimates 

over thin, shallow sources.  However, it easy to see that if the magnetization vector has 

an orientation that is especially far from the input parameters for the pseudo-gravity 

transform, the shape of the magnitude of the horizontal gradient will not resemble that of 

the analytic signal over contacts, and poor or no depth estimates will result (Figure 45).  

In such cases, it is important to determine the magnetization vector before applying a 

pseudo-gravity transform.  A good method for determining this vector, which requires 

comparing the analytic signal amplitude with the horizontal gradient magnitude of the 

pseudo-gravity over contacts, has been proposed by Roest and Pilkington (1993). 
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Figure 45.  Shape of the two-dimensional horizontal gradient magnitude of the 
pseudo-gravity field over a contact when the source magnetization is not vertical 
(top).  The source magnetization is vertical in the bottom image (adapted from Roest 
and Pilkington, 1993). 

 

 In this study, a depth-error threshold of ≤50% for the second order analytic 

signal magnitude grid was used instead of ≤15% to acquire a significant number of 

solutions.  For the enhanced analytic signal method, there is a need for an algorithm that 

finds peaks in the higher-order analytic signal amplitudes using functions that properly 

describe their theoretical shapes over magnetic contacts.  This would allow for the 

calculated error to be indicative of the reliability of the depth solutions, and many 

erroneous depths would be eliminated from the output. 
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APPENDIX A:  Depth-to-source maps over the Los Reales Landfill 
 
 

 
A1.  Depth to source map over the Los Reales Landfill using the horizontal gradient 
method.  The circles are centered over the contacts and their sizes are relative to the 
depth from the airplane. 
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A2.  Depth to source map over the  Los Reales Landfill using the simple analytic 
signal method. 
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A3.  Depth to source map over the Los Reales Landfill using the enhanced analytic 
signal method (step model). 
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A4.  Depth to source map over the Los Reales Landfill using the local wavenumber 
method. 
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A5.  Depth to source map over the Los Reales Landfill using the local wavenumber 
method applied to the vertical integral of the total magnetic field. 
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A6.  Depth to source map over the Los Reales Landfill using the enhanced local 
wavenumber method. 
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A7.  Depth to source map over the Los Reales Landfill using Euler deconvolution. 
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A8.  Pseudo-gravity anomaly map over the Los Reales Landfill. 
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A9.  Depth to source map over the Los Reales Landfill using the horizontal gradient 
method applied to the pseudo-gravity field. 
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A10.  Depth to source map over the Los Reales Landfill using the simple analytic 
signal method applied to the pseudo-gravity field. 
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A11.  Depth to source map over the Los Reales Landfill using the enhanced analytic 
signal method (step model) applied to the pseudo-gravity field. 
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A12.  High-pass filtered magnetic field anomaly map over the Los Reales Landfill. 
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A13.  Depth to source map over the Los Reales Landfill using the horizontal 
gradient method applied to the high-pass filtered data. 
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A14.  Depth to source map over the Los Reales Landfill using the simple analytic 
signal method applied to the high-pass filtered data. 
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A15.  Depth to source map over the Los Reales Landfill using the enhanced analytic 
signal method (step model) applied to the high-pass filtered data. 
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A16.  Depth to source map over the Los Reales Landfill using the local wavenumber 
method applied to the high-pass filtered data. 
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A17.  Depth to source map over the Los Reales Landfill using the local wavenumber 
method applied to the vertical integral of the residual magnetic field. 
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A18.  Depth to source map over the Los Reales Landfill using the enhanced local 
wavenumber method applied to the high-pass filtered data. 
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A19.  Depth to source map over the Los Reales Landfill using Euler deconvolution 
applied to the high-pass filtered data. 
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A20.  High-pass filtered pseudo-gravity anomaly map over the Los Reales Landfill. 
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A21.  Depth to source map over the Los Reales Landfill using the horizontal 
gradient method applied to the high-pass filtered pseudo-gravity field. 
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A22.  Depth to source map over the Los Reales Landfill using the simple analytic 
signal method applied to the high-pass filtered pseudo-gravity field. 
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A23.  Depth to source map over the Los Reales Landfill using the enhanced analytic 
signal method (step model) applied to the high-pass filtered pseudo-gravity field. 
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APPENDIX B:  Depth-to-source maps over Black Mountain 
 
 

 
B1.  Depth to source map over Black Mountain using the horizontal gradient 
method.  The circles are centered over the contacts and their sizes are relative to the 
depth from the airplane. 
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B2.  Depth to source map over Black Mountain using the simple analytic signal 
method. 



   
  183 

 

 
B3.  Depth to source map over Black Mountain using the enhanced analytic signal 
method (step model). 
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B4.  Depth to source map over Black Mountain using the local wavenumber method. 
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B5.  Depth to source map over Black Mountain using the local wavenumber method 
applied to the vertical integral of the total magnetic field. 
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B6.  Depth to source map over Black Mountain using the enhanced local 
wavenumber method. 
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B7.  Depth to source map over Black Mountain using Euler deconvolution, for N=1. 
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B8.  Depth to source map over Black Mountain using Euler deconvolution, for 
N=0.5. 
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B9.  Pseudo-gravity anomaly map over Black Mountain. 
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B10.  Depth to source map over Black Mountain using the horizontal gradient 
method applied to the pseudo-gravity field. 



   
  191 

 

 
B11.  Depth to source map over Black Mountain using the simple analytic signal 
method applied to the pseudo-gravity field. 
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B12.  Depth to source map over Black Mountain using the enhanced analytic signal 
method (step model) applied to the pseudo-gravity field. 
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B13.  High-pass filtered magnetic field anomaly map over Black Mountain.  The 
white outline borders the topographic expression of Black Mountain. 
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B14.  Depth to source map over Black Mountain using the horizontal gradient 
method applied to the high-pass filtered data. 



   
  195 

 

 
B15.  Depth to source map over Black Mountain using the simple analytic signal 
method applied to the high-pass filtered data. 
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B16.  Depth to source map over Black Mountain using the enhanced analytic signal 
method (step model) applied to the high-pass filtered data. 
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B17.  Depth to source map over Black Mountain using the local wavenumber 
method applied to the high-pass filtered data. 
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B18.  Depth to source map over Black Mountain using the local wavenumber 
method applied to the vertical integral of the residual magnetic field. 
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B19.  Depth to source map over Black Mountain using the enhanced local 
wavenumber method applied to the high-pass filtered data. 
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B20.  Depth to source map over Black Mountain using Euler deconvolution applied 
to the high-pass filtered data, for N=1. 
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B21.  Depth to source map over Black Mountain using Euler deconvolution applied 
to the high-pass filtered data, for N=0.5. 
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B22.  High-pass filtered pseudo-gravity anomaly map over Black Mountain. 
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B23.  Depth to source map over Black Mountain using the horizontal gradient 
method applied to the high-pass filtered pseudo-gravity field. 
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B24.  Depth to source map over Black Mountain using the simple analytic signal 
method applied to the high-pass filtered pseudo-gravity field. 
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B25.  Depth to source map over Black Mountain using the enhanced analytic signal 
method (step model) applied to the high-pass filtered pseudo-gravity field. 
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APPENDIX C:  Depth-to-source maps over the natural gas pipelines 
 
 

 
C1.  Depth to source map over the pipelines using the  horizontal gradient method.  
The circles are centered over the contacts and their sizes are relative to the depth 
from the airplane. 
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C2.  Depth to source map over the pipelines using the simple analytic signal method. 
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C3.  Depth to source map over the  pipelines using the enhanced analytic signal 
method (step model). 
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C4.  Depth to source map over the pipelines using the local wavenumber method. 
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C5.  Depth to source map over the pipelines using the local wavenumber method 
applied to the vertical integral of the total magnetic field. 
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C6.  Depth to source map over the pipelines using the enhanced local wavenumber 
method. 
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C7.  Depth to source map over the pipelines using Euler deconvolution. 
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C8.  Pseudo-gravity anomaly map over the natural gas pipelines. 
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C9.  Depth to source map over the pipelines using the horizontal gradient method 
applied to the pseudo-gravity field. 
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C10.  Depth to source map over the pipelines using the simple analytic signal 
method applied to the pseudo-gravity field. 
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C11.  Depth to source map over the pipelines using the enhanced analytic signal 
method (step model) applied to the pseudo-gravity field. 



   
  217 

 

 
C12.  High-pass filtered magnetic field anomaly map over the natural gas pipelines. 
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C13.  Depth to source map over the  pipelines using the horizontal gradient method 
applied to the high-pass filtered data. 
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C14.  Depth to source map over the pipelines using the simple analytic signal 
method applied to the high-pass filtered data. 
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C15.  Depth to source map over the pipelines using the enhanced analytic signal 
method (step model) applied to the high-pass filtered data. 
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C16.  Depth to source map over the pipelines using the local wavenumber method 
applied to the high-pass filtered data. 
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C17.  Depth to source map over the pipelines using the local wavenumber method 
applied to the vertical integral of the residual magnetic field. 
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C18.  Depth to source map over the pipelines using the enhanced local wavenumber 
method applied to the high-pass filtered data. 
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C19.  Depth to source map over the pipelines using Euler deconvolution applied to 
the high-pass filtered data. 
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C20.  High-pass filtered pseudo-gravity anomaly map over the natural gas pipelines. 
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C21.  Depth to source map over the pipelines using the horizontal gradient method 
applied to the high-pass filtered pseudo-gravity field. 
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C22.  Depth to source map over the pipelines using the simple analytic signal 
method applied to the high-pass filtered pseudo-gravity field. 
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C23.  Depth to source map over the pipelines using the enhanced analytic signal 
method (step model) applied to the high-pass filtered pseudo-gravity field. 
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